skip to main content


Title: Fractal correction in advanced solar energy material’s current–voltage equation
The world energy crisis necessitated the cause of the research interest into new, renewable and alternative energy sources. From this point of view, there is research on phenomena and different synthetic methods and on structure and electronic property optimization expressed by important material and device advancement. Efficiency and electricity generation (batteries, fuel cells, hydrogen energy) are nowadays actual questions. Because of that research, innovations and applications require extended knowledge by fractal nature characterization. The electrochemical energy sources solutions, especially electrolytes, are in fractal nature science focus. Based on the research novelties, especially electronic materials, we presented an investigation on fractal structure influence in electrochemistry. We explore the activation energy and fundamental thermodynamic functions and values, also the electrode surface changed by complex fractal correction through fractal dimension of grains and pores, and Brownian motion of involved particles, as well. At the end, the electrochemical Arrhenius and Butler–Volmer equation fractalization is applied. All of these open new perspectives for electrochemical energy processes, within electrolyte bulk and related electrodes and more precise energy generation. This is important for semiconductor processing in solar cells and devices. So, we included the knowledge of fractal sciences advancement in this field for current–voltage equation.  more » « less
Award ID(s):
2101041
NSF-PAR ID:
10357253
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Modern Physics B
Volume:
36
Issue:
02
ISSN:
0217-9792
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The shift toward renewable energy generation sources, characterized by their non‐carbon emitting but variable nature, has spurred significant innovation in energy storage technologies. Advancements in foundational understanding from investments in basic science and clever engineering solutions, coupled with increasing industrial adoption, have resulted in a notable reduction in the cost of storing electricity from variable energy generation sources. These developments have paved the way for the exploration of new and innovative forms of energy storage that deviate from traditional technologies. In this perspective, it is posited that the progress made in energy storage research over recent years has opened the door to the development of energy carriers for technologies that are yet to be realized. To illustrate this concept, examples of alternative energy carriers are provided within the context of unique electrochemical interfaces for electrochemical hydrogenic transformations. The unique properties of these interfaces and electrochemical systems can be leveraged in ways not yet imagined, creating new possibilities for energy storage. A perspective on the progress and challenges for each interface as well as a general outlook for the advancement of energy carrier systems are provided.

     
    more » « less
  2. All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixing process. Implementing high-pressure for the electrode and electrolyte of ASSB in the assembling process has been verified is a but effective way to boost the ion transmission ability between the cathode active materials and the SE by decreasing the grain boundary impedance. Whereas the short-circuit of the battery would be induced by the mechanical deformation of the electrolyte under high pressure. 4 Herein, we demonstrate a novel way to address the ion transmission problem at the cathode-electrolyte interface in ASSBs. Starting from the cathode configuration, the finite element method (FEM) was employed to evaluate the current concentration and the distribution of the space charge layer at the cathode-electrolyte interface. Hierarchical three-dimensional (HTD) structures are found to have a higher Li + transfer number (t Li+ ), fewer free anions, and the weaker space-charge layer at the cathode-electrolyte interface in the resulting FEM simulation. To take advantage of the HTD structure, stereolithography is adopted as a manufacturing technique and single-crystalline Ni-rich (SCN) materials are selected as the active materials. Next, the manufactured HTD cathode is sintered at 600 °C in an N 2 atmosphere for the carbonization of the resin, which induces sufficient electronic conductivity for the cathode. Then, the gel-like Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) precursor is synthesized and filled into the voids of the HTD structure cathode sufficiently. And the filled HTD structure cathodes are sintered at 900 °C to achieve the crystallization of the LATP gel. Scanning transmission electron microscopy (STEM) is used to unveil the morphology of the cathode-electrolyte interface between the sintered HTD cathode and the in-situ generated electrolyte (LATP). A transient phase has been found generated at the interface and matched with both lattices of the SCN and the SE, accelerating the transmission of the Li-ions, which is further verified by density functional theory calculations. In addition, Electron Energy Loss Spectroscopy demonstrates the preserved interface between HTD cathode and SEs. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than the sample that mix SCN and SEs simply in the 2D planar structure, which confirms a weakened space charge layer by the enhanced contact capability as well as the ion transmission ability. To see if the demonstrated method is universally applicable, LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) is selected as the cathode active material and manufactured in the same way as the SCN. The HTD cathode based on NCM811 exhibits higher electrochemical performance compared with the reference sample based on the 2D planar mixing-type cathode. We believe such a demonstrated universal strategy provides a new guideline to engineer the cathode/electrolyte interface by revolutionizing electrode structures that can be applicable to all-solid-state batteries. Figure 1. Schematic of comparing of traditional 2D planar cathode and HTD cathode in ASSB Tikekar, M. D. , et al. , Nature Energy (2016) 1 (9), 16114 Banerjee, A. , et al. , Chem Rev (2020) 120 (14), 6878 Chen, R. , et al. , Chem Rev (2020) 120 (14), 6820 Cheng, X. , et al. , Advanced Energy Materials (2018) 8 (7) Figure 1 
    more » « less
  3. It is urgent to enhance battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next-generation high energy storage systems, the lithium-sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and cost savings potential.1 In addition to the high theoretical capacity of sulfur cathode as high as 1,673 mA h g-1, sulfur is further appealing due to its abundance in nature, low cost, and low toxicity. Despite these advantages, the application of sulfur cathodes to date has been hindered by a number of obstacles, including low active material loading, low electronic conductivity, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the lithium-sulfur (Li-S) battery.3 However, the longer diffusion length of lithium ions required in the thick electrode decrease the wettability of the electrolyte (into the entire cathode) and utilization ratio of active materials.4 Encapsulating active sulfur in carbon hosts is another common method to improve the performance of sulfur cathodes by enhancing the electronic conductivity and restricting shuttle effects. Nevertheless, it is also reported that the encapsulation approach causes unfavorable carbon agglomeration with low dimensional carbons and a low energy density of the battery with high dimensional carbons. Although an effort to induce defects in the cathode was made to promote sulfur conversion kinetic conditions, only one type of defect has demonstrated limited performance due to the strong adsorption of the uncatalyzed clusters to the defects (i.e.: catalyst poisoning). 5 To mitigate the issues listed above, herein we propose a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD).6,7 Specifically, the electrode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in a reducing atmosphere (e.g.: H2) in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. A cathode treatment with benzene sulfonic acid further induces additional defects (non-intrinsic) to enhance the sulfur conversion kinetic. Furthermore, intrinsic defects engineering is expected to synergistically create favorable sulfur conversion conditions and mitigate the catalyst poisoning issue. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects, unfavored in the Li-S battery performance. Identified by SEM and TEM characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also the inner surface of the microchannels. High resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified sample demonstrate that the high concentration of the defects have been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with elevated sulfur utilization ratio, accelerated reaction kinetics, and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. 
    more » « less
  4. Energy-relevant small molecule activations and related processes are often multi-electron in nature. Ferrocene is iconic for its well-behaved one-electron chemistry, and it is often used to impart redox activity to self-assembled architectures. When multiple ferrocenes are present as pendant groups in a single structure, they often behave as isolated sites with no separation of their redox events. Herein, we study a suite of molecules culminating in a self-assembled palladium(II) truncated tetrahedron (TT) with six pendant ferrocene moieties using the iron(III/II) couple to inform about the electronic structure and, in some cases, subsequent reactivity. Notably, although known ferrocene-containing metallacycles and cages show simple reversible redox chemistry, this TT undergoes a complex multi-step electrochemical mechanism upon oxidation. The electrochemical behavior was observed by voltammetric and spectroelectrochemical techniques and suggests that the initial Fc-centered oxidation is coupled to a subsequent change in species solubility and deposition of a film onto the working electrode, which is followed by a second separable electrochemical oxidation event. The complicated electrochemical behavior of this self-assembly reveals emergent properties resulting from organizing multiple ferrocene subunits into a discrete structure. We anticipate that such structures may provide the basis for multiple charge separation events to drive important processes related to energy capture, storage, and use, especially as the electronic communication between sites is further tuned. 
    more » « less
  5. There is a need for better 3-D model representations of cerebrovasculature particularly on the order of arterioles. Such a model would have many applications and could be a useful tool for those conducting studies involving the brain and its function. The load bearing effects of the vasculature can be better studied with such a model, such as in the case of large strains. In addition, by having a continuous hollow structure, studies involving flow properties can be conducted at a whole scale rather than in a segmented view. Such studies are critical to the advancement of knowledge about the brain and its mechanics which can lead to advancements in preventative and curative care, as well as preventative safety measures. The model developed in this paper could serve as a tool in such studies. A fractal L-system is used to define the branching nature of the model. As such a growing tree structure is developed and characterized by its bifurcation at the end of a vessel segment. The index of bifurcation, α, is a parameter that controls the behavior of the two generated daughter vessels. The model presented here grows from a single parent branch into a bifurcation each of which then bifurcates as many times as specified. The length and diameter of the two daughter vessels will be a function of the respective parent’s length and diameter as well as a value α. The branching angle of the two daughter vessels will be entirely controlled by α. The hollow continuous nature of the model allows for it to be used as a representation of the arteriole structures in the brain. There is also use for such a model in other areas of the body, however, this study will focus on the representation of the cerebrovasculature. The end result is a branching tree model generated in Abaqus which is continuous, hollow and capable of extensive generation with uses in modeling complex cerebrovascular mechanics. 
    more » « less