skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heart rate detection using single-channel Doppler radar system
A number of algorithms have been developed to extract heart rate from physiological motion data using Doppler radar system. Yet, it is very challenging to eliminate noise associated with surroundings, especially with a single-channel Doppler radar system. However, single-channel Doppler radars provide the advantage of operating at lower power. Additionally, heart rate extraction using single-channel Doppler radar has remained somewhat unexplored. This has motivated the development of effective signal processing algorithms for signals received from single-channel Doppler radars. Three algorithms have been studied for estimating heart rate. The first algorithm is based on applying FFT on an FIR filtered signal. In the second algorithm, autocorrelation was performed on the filtered data. Thirdly, a peak finding algorithm was used in conjunction with a moving average preceded by a clipper to determine the heart rate. The results obtained were compared with heart rate readings from a pulse oximeter. With a mean difference of 2.6 bpm, the heart rate from Doppler radar matched that from the pulse oximeter most frequently when the peak finding algorithm was used. The results obtained using autocorrelation and peak finding algorithm (with standard deviations of 2.6 bpm and 4.0 bpm) suggest that a single channel Doppler radar system can be a viable alternative to contact heart rate monitors in patients for whom contact measurements are not feasible.  more » « less
Award ID(s):
2039089 1831303
PAR ID:
10357255
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Heart rate detection using single-channel Doppler radar system
Page Range / eLocation ID:
1953 to 1956
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study presents findings in the terahertz (THz) frequency spectrum for non-contact cardiac sensing applications. Cardiac pulse information is simultaneously extracted using THz waves based on the established principles in electronics and optics. The first fundamental principle is micro-Doppler motion effect. This motion based method, primarily using coherent phase information from the radar receiver, has been widely exploited in microwave frequency bands and has recently found popularity in millimeter waves (mmWave) for breathe rate and heart rate detection. The second fundamental principle is reflectance based optical measurement using infrared or visible light. The variation in the light reflection is proportional to the volumetric change of the heart, often referred as photoplethysmography (PPG). Herein, we introduce the concept of terahertz-wave-plethysmography (TPG), which detects blood volume changes in the upper dermis tissue layer by measuring the reflectance of THz waves, similar to the existing remote PPG (rPPG) principle. The TPG principle is justified by scientific deduction, electromagnetic wave simulations and carefully designed experimental demonstrations. Additionally, pulse measurements from various peripheral body parts of interest (BOI), palm, inner elbow, temple, fingertip and forehead, are demonstrated using a wideband THz sensing system developed by the Terahertz Electronics Lab at Arizona State University, Tempe. Among the BOIs under test, it is found that the measurements from forehead BOI gives the best accuracy with mean heart rate (HR) estimation error 1.51 beats per minute (BPM) and standard deviation 1.08 BPM. The results validate the feasibility of TPG for direct pulse monitoring. A comparative study on pulse sensitivity is conducted between TPG and rPPG. The results indicate that the TPG contains more pulsatile information from the forehead BOI than that in the rPPG signals in regular office lighting condition and thus generate better heart rate estimation statistic in the form of empirical cumulative distribution function of HR estimation error. Last but not least, TPG penetrability test for covered skin is demonstrated using two types of garment materials commonly used in daily life. 
    more » « less
  2. Many individuals suffer from ailments such hypertension that require frequent health monitoring. Unfortunately, current technology does not possess the ability for unobtrusive, continuous monitoring. This paper proposes estimation of pulse pressure based on pulse transient time determined from one non-contact, and one contact sensor: Doppler radar for non-contact detection of heart beat, and piezoelectric finger pulse sensor. The time delay between heart beat and finger pulse was determined using MATLAB software, and pulse wave velocity (PWV) was calculated. Finally, subjects' pulse pressure estimated using PWV was found to be in good agreement with pulse pressure measured using an off the shelf sphygmomanometer by reading and taking difference of systolic and diastolic blood pressure. 
    more » « less
  3. Abstract High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases. Significance StatementDoppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies. 
    more » « less
  4. Performance improvements obtained by recent principled approaches for pulse rate (PR) estimation from face videos have typically been achieved by adding or modifying certain modules within a reconfigurable system. Yet, evaluations of such remote photoplethysmography (rPPG) are usually performed only at the system level. To better understand each module's contribution and facilitate future research in explainable learning and artificial intelligence for physiological monitoring, this paper conducts a comparative study of video-based, principled PR tracking algorithms, with a focus on challenging fitness scenarios. A review of the progress achieved over the last decade and a half in this field is utilized to construct the major processing modules of a reconfigurable remote pulse rate sensing system. Experiments are conducted on two challenging datasets—an internal collection of 25 videos of two Asian males exercising on stationary-bike, elliptical, and treadmill machines, and 34 videos from a public ECG fitness database of 14 men and 3 women exercising on elliptical and stationary-bike machines. The signal-to-noise ratio (SNR), Pearson's correlation coefficient, error count ratio, error rate, and root mean squared error are used for performance evaluation. The top-performing configuration produces respective values of −0.8 dB, 0.86, 9%, 1.7%, and 3.3 beats per minute (bpm) for the internal dataset and 1.3 dB, 0.77, 28.6%, 6.0%, and 8.1 bpm for the ECG Fitness dataset, achieving significant improvements over alternative configurations. Our results suggest a synergistic effect between pulse color mapping and adaptive motion filtering, as well as the importance of a robust frequency tracking algorithm for PR estimation in low SNR settings. 
    more » « less
  5. Camera-based physiological measurement enables vital signs to be captured unobtrusively without contact with the body. Remote, or imaging, photoplethysmography involves recovering peripheral blood flow from subtle variations in video pixel intensities. While the pulse signal might be easy to obtain from high quality uncompressed videos, the signal-to-noise ratio drops dramatically with video bitrate. Uncompressed videos incur large file storage and data transfer costs, making analysis, manipulation and sharing challenging. To help address these challenges, we use compression specific supervised models to mitigate the effect of temporal video compression on heart rate estimates. We perform a systematic evaluation of the performance of state-of-the-art algorithms across different levels, and formats, of compression. We demonstrate that networks trained on compressed videos consistently outperform other benchmark methods, both on stationary videos and videos with significant rigid head motions. By training on videos with the same, or higher compression factor than test videos, we achieve improvements in signal-to-noise ratio (SNR) of up to 3 dB and mean absolute error (MAE) of up to 6 beats per minute (BPM). 
    more » « less