skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature Dependence of Avalanche Breakdown of AlGaAsSb and AlInAsSb Avalanche Photodiodes
Award ID(s):
1936016
PAR ID:
10357306
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Lightwave Technology
Volume:
40
Issue:
17
ISSN:
0733-8724
Page Range / eLocation ID:
5934 to 5942
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This abstract presents a study on the avalanche capability of GaN p-i-n diode leading to the achievement of 60A/W, 278V GaN avalanche photodiode. The GaN p-i-n diode fabricated on a free-standing GaN substrate was avalanche capable due to optimal edge termination. Both electrical and optical characterizations were conducted to validate the occurrence of avalanche in these devices. The device showed a positive temperature coefficient of breakdown voltage, which follows the nature of avalanche breakdown. The positive coefficient was measured to be 3.85 ×10^(-4) K^(-1) (0.1V/K) under a measurement temperature ranges from 300 K to 525 K. Moreover, the fabricated device showed excellent performance as an avalanche photo detector with record device metrics: (1) record high photoresponsivity of 60 A/W; (2) high optical gain of 10^5 ; and (3) low cark current. Robust avalanche is a key requirement in various device applications and necessary for their reliable operation. 
    more » « less
  2. High-peak-power lasers are fundamental to high-field science: increased laser intensity has enabled laboratory astrophysics, relativistic plasma physics, and compact laser-based particle accelerators. However, the meter-scale optics required for multi-petawatt lasers to avoid light-induced damage make further increases in power challenging. Plasma tolerates orders-of-magnitude higher light flux than glass, but previous efforts to miniaturize lasers by constructing plasma analogs for conventional optics were limited by low efficiency and poor optical quality. We describe a new approach to plasma optics based on avalanche ionization of atomic clusters that produces plasma volume transmission gratings with dramatically increased diffraction efficiency. We measure an average efficiency of up to 36% and a single-shot efficiency of up to 60%, which is comparable to key components of high-power laser beamlines, while maintaining high spatial quality and focusability. These results suggest that plasma diffraction gratings may be a viable component of future lasers with peak power beyond 10 PW. 
    more » « less