skip to main content


Title: FAITH: Few-Shot Graph Classification with Hierarchical Task Graphs
Few-shot graph classification aims at predicting classes for graphs, given limited labeled graphs for each class. To tackle the bottleneck of label scarcity, recent works propose to incorporate few-shot learning frameworks for fast adaptations to graph classes with limited labeled graphs. Specifically, these works propose to accumulate meta-knowledge across diverse meta-training tasks, and then generalize such meta-knowledge to the target task with a disjoint label set. However, existing methods generally ignore task correlations among meta-training tasks while treating them independently. Nevertheless, such task correlations can advance the model generalization to the target task for better classification performance. On the other hand, it remains non-trivial to utilize task correlations due to the complex components in a large number of meta-training tasks. To deal with this, we propose a novel few-shot learning framework FAITH that captures task correlations via constructing a hierarchical task graph at different granularities. Then we further design a loss-based sampling strategy to select tasks with more correlated classes. Moreover, a task-specific classifier is proposed to utilize the learned task correlations for few-shot classification. Extensive experiments on four prevalent few-shot graph classification datasets demonstrate the superiority of FAITH over other state-of-the-art baselines.  more » « less
Award ID(s):
2006844
PAR ID:
10357515
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
2284 to 2290
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The problem of few-shot graph classification targets at assigning class labels for graph samples, where only limited labeled graphs are provided for each class. To solve the problem brought by label scarcity, recent studies have proposed to adopt the prevalent few-shot learning framework to achieve fast adaptations to graph classes with limited labeled graphs. In particular, these studies typically propose to accumulate meta-knowledge across a large number of meta-training tasks, and then generalize such meta-knowledge to meta-test tasks sampled from a disjoint class set. Nevertheless, existing studies generally ignore the crucial task correlations among meta-training tasks and treat them independently. In fact, such task correlations can help promote the model generalization to meta-test tasks and result in better classification performance. On the other hand, it remains challenging to capture and utilize task correlations due to the complex components and interactions in meta-training tasks. To deal with this, we propose a novel few-shot graph classification framework FAITH to capture task correlations via learning a hierarchical task structure at different granularities. We further propose a task-specific classifier to incorporate the learned task correlations into the few-shot graph classification process. Moreover, we derive FAITH+, a variant of FAITH that can improve the sampling process for the hierarchical task structure. The extensive experiments on four prevalent graph datasets further demonstrate the superiority of FAITH and FAITH+ over other state-of-the-art baselines.

     
    more » « less
  2. The task of few-shot graph classification aims to assign class labels to graph samples, where only a limited number of labeled graphs are provided for each class. To deal with the problem brought about by label scarcity, recent works have focused on adopting the prevalent few-shot learning framework to ensure fast adaptations to classes with limited labeled graphs. In general, these studies propose to accumulate meta-knowledge across various base classes with sufficient labeled graphs, and then generalize such meta-knowledge to novel classes, which are disjoint from base classes and consist of limited labeled graphs. However, existing studies generally ignore the distinct distribution shifts between base classes and novel classes, leading to unsatisfactory adaptation performance. On the other hand, it remains challenging to address this issue due to the potential variance in distributions between classes. To tackle this problem, we propose a novel generative few-shot graph classification framework that can promote adaptation performance by generating adaptive structures for graphs in novel classes. Our framework incorporates a generative model to modify the graph structures for adaptation. We further conduct extensive experiments to validate the effectiveness of our framework. 
    more » « less
  3. Node classification is of great importance among various graph mining tasks. In practice, real-world graphs generally follow the long-tail distribution, where a large number of classes only consist of limited labeled nodes. Although Graph Neural Networks (GNNs) have achieved significant improvements in node classification, their performance decreases substantially in such a few-shot scenario. The main reason can be attributed to the vast generalization gap between meta-training and meta-test due to the task variance caused by different node/class distributions in meta-tasks (i.e., node-level and class-level variance). Therefore, to effectively alleviate the impact of task variance, we propose a task-adaptive node classification framework under the few-shot learning setting. Specifically, we first accumulate meta-knowledge across classes with abundant labeled nodes. Then we transfer such knowledge to the classes with limited labeled nodes via our proposed task-adaptive modules. In particular, to accommodate the different node/class distributions among meta-tasks, we propose three essential modules to perform node-level, class-level, and task-level adaptations in each meta-task, respectively. In this way, our framework can conduct adaptations to different meta-tasks and thus advance the model generalization performance on meta-test tasks. Extensive experiments on four prevalent node classification datasets demonstrate the superiority of our framework over the state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/TENT https://github.com/SongW-SW/TENT. 
    more » « less
  4. Few-shot node classification aims at classifying nodes with limited labeled nodes as references. Recent few-shot node classification methods typically learn from classes with abundant labeled nodes (i.e., meta-training classes) and then generalize to classes with limited labeled nodes (i.e., meta-test classes). Nevertheless, on real-world graphs, it is usually difficult to obtain abundant labeled nodes for many classes. In practice, each meta-training class can only consist of several labeled nodes, known as the extremely weak supervision problem. In few-shot node classification, with extremely limited labeled nodes for meta-training, the generalization gap between meta-training and meta-test will become larger and thus lead to suboptimal performance. To tackle this issue, we study a novel problem of few-shot node classification with extremely weak supervision and propose a principled framework X-FNC under the prevalent meta-learning framework. Specifically, our goal is to accumulate meta-knowledge across different meta-training tasks with extremely weak supervision and generalize such knowledge to meta-test tasks. To address the challenges resulting from extremely scarce labeled nodes, we propose two essential modules to obtain pseudo-labeled nodes as extra references and effectively learn from extremely limited supervision information. We further conduct extensive experiments on four node classification datasets with extremely weak supervision to validate the superiority of our framework compared to the state-of-the-art baselines. 
    more » « less
  5. Graph few-shot learning is of great importance among various graph learning tasks. Under the few-shot scenario, models are often required to conduct classification given limited labeled samples. Existing graph few-shot learning methods typically leverage Graph Neural Networks (GNNs) and perform classification across a series of meta-tasks. Nevertheless, these methods generally rely on the original graph (i.e., the graph that the meta-task is sampled from) to learn node representations. Consequently, the learned representations for the same nodes are identical in all meta-tasks. Since the class sets are different across meta-tasks, node representations should be task-specific to promote classification performance. Therefore, to adaptively learn node representations across meta-tasks, we propose a novel framework that learns a task-specific structure for each meta-task. To handle the variety of nodes across meta-tasks, we extract relevant nodes and learn task-specific structures based on node influence and mutual information. In this way, we can learn node representations with the task-specific structure tailored for each meta-task. We further conduct extensive experiments on five node classification datasets under both single- and multiple-graph settings to validate the superiority of our framework over the state-of-the-art baselines. 
    more » « less