skip to main content


Search for: All records

Award ID contains: 2006844

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent years have witnessed a rocketing growth of machine learning methods on graph data, especially those powered by effective neural networks. Despite their success in different real‐world scenarios, the majority of these methods on graphs only focus on predictive or descriptive tasks, but lack consideration of causality. Causal inference can reveal the causality inside data, promote human understanding of the learning process and model prediction, and serve as a significant component of artificial intelligence (AI). An important problem in causal inference is causal effect estimation, which aims to estimate the causal effects of a certain treatment (e.g., prescription of medicine) on an outcome (e.g., cure of disease) at an individual level (e.g., each patient) or a population level (e.g., a group of patients). In this paper, we introduce the background of causal effect estimation from observational data, envision the challenges of causal effect estimation with graphs, and then summarize representative approaches of causal effect estimation with graphs in recent years. Furthermore, we provide some insights for future research directions in related area. Link to video abstract:https://youtu.be/BpDPOOqw‐ns

     
    more » « less
  2. Recently, there has been growing interest in developing the next-generation recommender systems (RSs) based on pretrained large language models (LLMs). However, the semantic gap between natural language and recommendation tasks is still not well addressed, leading to multiple issues such as spuriously correlated user/item descriptors, ineffective language modeling on user/item data, inefficient recommendations via auto-regression, etc. In this paper, we propose CLLM4Rec, the first generative RS that tightly integrates the LLM paradigm and ID paradigm of RSs, aiming to address the above challenges simultaneously. We first extend the vocabulary of pretrained LLMs with user/item ID tokens to faithfully model user/item collaborative and content semantics. Accordingly, a novel soft+hard prompting strategy is proposed to effectively learn user/item collaborative/content token embeddings via language modeling on RS-specific corpora, where each document is split into a prompt consisting of heterogeneous soft (user/item) tokens and hard (vocab) tokens and a main text consisting of homogeneous item tokens or vocab tokens to facilitate stable and effective language modeling. In addition, a novel mutual regularization strategy is introduced to encourage CLLM4Rec to capture recommendation-related information from noisy user/item content. Finally, we propose a novel recommendation-oriented finetuning strategy for CLLM4Rec, where an item prediction head with multinomial likelihood is added to the pretrained CLLM4Rec backbone to predict hold-out items based on soft+hard prompts established from masked user-item interaction history, where recommendations of multiple items can be generated efficiently without hallucination. 
    more » « less
    Free, publicly-accessible full text available May 13, 2025
  3. Graph-structured data is ubiquitous among a plethora of real-world applications. However, as graph learning algorithms have been increasingly deployed to help decision-making, there has been rising societal concern in the bias these algorithms may exhibit. In certain high-stake decision-making scenarios, the decisions made may be life-changing for the involved individuals. Accordingly, abundant explorations have been made to mitigate the bias for graph learning algorithms in recent years. However, there still lacks a library to collectively consolidate existing debiasing techniques and help practitioners to easily perform bias mitigation for graph learning algorithms. In this paper, we present PyGDebias, an open-source Python library for bias mitigation in graph learning algorithms. As the first comprehensive library of its kind, PyGDebias covers 13 popular debiasing methods under common fairness notions together with 26 commonly used graph datasets. In addition, PyGDebias also comes with comprehensive performance benchmarks and well-documented API designs for both researchers and practitioners. To foster convenient accessibility, PyGDebias is released under a permissive BSD-license together with performance benchmarks, API documentation, and use examples at https://github.com/yushundong/PyGDebias. 
    more » « less
    Free, publicly-accessible full text available May 13, 2025
  4. The problem of few-shot graph classification targets at assigning class labels for graph samples, where only limited labeled graphs are provided for each class. To solve the problem brought by label scarcity, recent studies have proposed to adopt the prevalent few-shot learning framework to achieve fast adaptations to graph classes with limited labeled graphs. In particular, these studies typically propose to accumulate meta-knowledge across a large number of meta-training tasks, and then generalize such meta-knowledge to meta-test tasks sampled from a disjoint class set. Nevertheless, existing studies generally ignore the crucial task correlations among meta-training tasks and treat them independently. In fact, such task correlations can help promote the model generalization to meta-test tasks and result in better classification performance. On the other hand, it remains challenging to capture and utilize task correlations due to the complex components and interactions in meta-training tasks. To deal with this, we propose a novel few-shot graph classification framework FAITH to capture task correlations via learning a hierarchical task structure at different granularities. We further propose a task-specific classifier to incorporate the learned task correlations into the few-shot graph classification process. Moreover, we derive FAITH+, a variant of FAITH that can improve the sampling process for the hierarchical task structure. The extensive experiments on four prevalent graph datasets further demonstrate the superiority of FAITH and FAITH+ over other state-of-the-art baselines.

     
    more » « less
    Free, publicly-accessible full text available April 30, 2025
  5. Personalized Federated Learning (PFL) relies on collective data knowledge to build customized models. However, non-IID data between clients poses significant challenges, as collaborating with clients who have diverse data distributions can harm local model performance, especially with limited training data. To address this issue, we propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism. FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions and mitigate the data scarcity issue. It prioritizes and allocates resources based on data similarity. We further establish the theoretical convergence behavior of FedACS. Experiments on CIFAR10 and FMNIST validate FedACS’s superiority, showcasing its potential to advance personalized federated learning. By tackling non-IID data challenges and data scarcity, FedACS offers promising advances in personalized federated learning. 
    more » « less
    Free, publicly-accessible full text available April 14, 2025
  6. The task of few-shot graph classification aims to assign class labels to graph samples, where only a limited number of labeled graphs are provided for each class. To deal with the problem brought about by label scarcity, recent works have focused on adopting the prevalent few-shot learning framework to ensure fast adaptations to classes with limited labeled graphs. In general, these studies propose to accumulate meta-knowledge across various base classes with sufficient labeled graphs, and then generalize such meta-knowledge to novel classes, which are disjoint from base classes and consist of limited labeled graphs. However, existing studies generally ignore the distinct distribution shifts between base classes and novel classes, leading to unsatisfactory adaptation performance. On the other hand, it remains challenging to address this issue due to the potential variance in distributions between classes. To tackle this problem, we propose a novel generative few-shot graph classification framework that can promote adaptation performance by generating adaptive structures for graphs in novel classes. Our framework incorporates a generative model to modify the graph structures for adaptation. We further conduct extensive experiments to validate the effectiveness of our framework. 
    more » « less
    Free, publicly-accessible full text available October 29, 2024
  7. Recently, there has been a growing interest in developing machine learning (ML) models that can promote fairness, i.e., eliminating biased predictions towards certain populations (e.g., individuals from a specific demographic group). Most existing works learn such models based on well-designed fairness constraints in optimization. Nevertheless, in many practical ML tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance. This is because existing fairness constraints are designed to restrict the prediction disparity among different sensitive groups, but with few samples, it becomes difficult to accurately measure the disparity, thus rendering ineffective fairness optimization. In this paper, we define the fairness-aware learning task with limited training samples as the fair few-shot learning problem. To deal with this problem, we devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks. To compensate for insufficient training samples, we propose an essential strategy to select and leverage an auxiliary set for each meta-test task. These auxiliary sets contain several labeled training samples that can enhance the model performance regarding fairness in meta-test tasks, thereby allowing for the transfer of learned useful fairness-oriented knowledge to meta-test tasks. Furthermore, we conduct extensive experiments on three real-world datasets to validate the superiority of our framework against the state-of-the-art baselines. 
    more » « less
    Free, publicly-accessible full text available September 30, 2024
  8. Recommender systems (RSs) have become an indispensable part of online platforms. With the growing concerns of algorithmic fairness, RSs are not only expected to deliver high-quality personalized content, but are also demanded not to discriminate against users based on their demographic information. However, existing RSs could capture undesirable correlations between sensitive features and observed user behaviors, leading to biased recommendations. Most fair RSs tackle this problem by completely blocking the influences of sensitive features on recommendations. But since sensitive features may also affect user interests in a fair manner (e.g., race on culture-based preferences), indiscriminately eliminating all the influences of sensitive features inevitably degenerate the recommendations quality and necessary diversities. To address this challenge, we propose a path-specific fair RS (PSF-RS) for recommendations. Specifically, we summarize all fair and unfair correlations between sensitive features and observed ratings into two latent proxy mediators, where the concept of path-specific bias (PS-Bias) is defined based on path-specific counterfactual inference. Inspired by Pearl's minimal change principle, we address the PS-Bias by minimally transforming the biased factual world into a hypothetically fair world, where a fair RS model can be learned accordingly by solving a constrained optimization problem. For the technical part, we propose a feasible implementation of PSF-RS, i.e., PSF-VAE, with weakly-supervised variational inference, which robustly infers the latent mediators such that unfairness can be mitigated while necessary recommendation diversities can be maximally preserved simultaneously. Experiments conducted on semi-simulated and real-world datasets demonstrate the effectiveness of PSF-RS. 
    more » « less
    Free, publicly-accessible full text available August 4, 2024
  9. Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients can only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. 
    more » « less
    Free, publicly-accessible full text available August 4, 2024