skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Largest acylindrical actions and Stability in hierarchically hyperbolic groups
We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3 3 –manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasiconvexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. In the appendix, it is verified that any space satisfying the a priori weaker property of being an “almost hierarchically hyperbolic space” is actually a hierarchically hyperbolic space. The results of the appendix are used to streamline the proofs in the main text.  more » « less
Award ID(s):
1803368
NSF-PAR ID:
10357721
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transactions of the American Mathematical Society, Series B
Volume:
8
Issue:
3
ISSN:
2330-0000
Page Range / eLocation ID:
66 to 104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider two manifestations of non-positive curvature: acylindrical actions (on hyperbolic spaces) and quasigeodesic stability. We study these properties for the class of hierarchically hyperbolic groups, which is a general framework for simultaneously studying many important families of groups, including mapping class groups, right-angled Coxeter groups, most 3–manifold groups, right-angled Artin groups, and many others. A group that admits an acylindrical action on a hyperbolic space may admit many such actions on different hyperbolic spaces. It is natural to try to develop an understanding of all such actions and to search for a “best” one. The set of all cobounded acylindrical actions on hyperbolic spaces admits a natural poset structure, and in this paper we prove that all hierarchically hyperbolic groups admit a unique action which is the largest in this poset. The action we construct is also universal in the sense that every element which acts loxodromically in some acylindrical action on a hyperbolic space does so in this one. Special cases of this result are themselves new and interesting. For instance, this is the first proof that right-angled Coxeter groups admit universal acylindrical actions. The notion of quasigeodesic stability of subgroups provides a natural analogue of quasi- convexity which can be considered outside the context of hyperbolic groups. In this paper, we provide a complete classification of stable subgroups of hierarchically hyperbolic groups, generalizing and extending results that are known in the context of mapping class groups and right-angled Artin groups. Along the way, we provide a characterization of contracting quasigeodesics; interestingly, in this generality the proof is much simpler than in the special cases where it was already known. 
    more » « less
  2. The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the “best” hyperbolic action of a group as the largest element of this poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit the largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have the largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina–Bromberg–Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action. 
    more » « less
  3. The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible spherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all 2-dimensional Artin groups, and for spherical Artin groups of any type other than 𝐸₆, 𝐸₇, 𝐸₈. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid. 
    more » « less
  4. We provide a new method of constructing non-quasiconvex subgroups of hyperbolic groups by utilizing techniques inspired by Stallings’ foldings. The hyperbolic groups constructed are in the natural class of right-angled Coxeter groups (RACGs for short) and can be chosen to be22-dimensional. More specifically, given a non-quasiconvex subgroup of a (possibly non-hyperbolic) RACG, our construction gives a corresponding non-quasiconvex subgroup of a hyperbolic RACG. We use this to construct explicit examples of non-quasiconvex subgroups of hyperbolic RACGs including subgroups whose generators are as short as possible (length two words), finitely generated free subgroups, non-finitely presentable subgroups, and subgroups of fundamental groups of square complexes of nonpositive sectional curvature.

     
    more » « less
  5. We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara. 
    more » « less