skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Paper-Based Portable Sensor and Nanosensor For Sulfur Dioxide Detection
Sulfur dioxide (SO2) pollution has become an increasing issue world-wide as it is produced both naturally and as industrial waste. Thus, it is critical to develop a sensor and detection methods to analyze SO2 in the atmosphere. In order to design and generate an effective sensor that detects low levels of SO2, fuchsine dyes have been used as a potential sensor material. New hydrophobic derivatives of Pararosaniline hydrochloride (pR-HCl) is developed to further improve the sensitivity of fuchsine dyes towards SO2 gas. It has been shown that these dyes can provide an economic and efficient colorimetric detection of SO2. In this work, (pR-HCl) is converted into an ionic material (IM) via a facile ion exchange reaction with bis (trifluoromethane) sulfonamide (NTF2) counterion. The new, hydrophobic derivative, pararosaniline bis (trifluoromethane) sulfonamide (pR-NTF2) IM was converted into stable aqueous ionic nanomaterials (INMs) by a reprecipitation method. Examination of absorption spectra results revealed that pR-NTF2 IM exhibits enhanced molar absorptivity in comparison to the parent dye (pR-HCl). The improved photophysical properties allowed a framework for a highly sensitive nanosensor for detection of SO2. A paper based portable SO2 sensor was also developed and tested for its ability to colorimetric detection of SO2. The cost effective and stable paper-based sensor exhibited the rapid response to decolorize the fuchsine dyes in few seconds as compared to their parent compound.Keywords: SO2 Detection, Portable and Low-cost Sensor, Nanosensor.  more » « less
Award ID(s):
1833004
PAR ID:
10357776
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Current Research in Materials Chemistry
Volume:
3
Issue:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications. 
    more » « less
  2. Continuous greenhouse gas monitoring at sub-zero temperatures is needed for monitoring greenhouse gas emission in cold environments such as the Arctic tundra. This work reports a single-frequency electrochemical impedance sensing (SF-EIS) method for real-time continuous monitoring of carbon dioxide (CO2) at a wide range of temperatures (−15 to 40 °C) by using robust ionic liquid (IL) sensing materials and noninvasive, low-power, and low-cost impedance readout mechanisms since they cause minimal changes in the sensing interface, avoiding the baseline change for long-term continuous sensing. In addition, a miniaturized planar electrochemical sensor was fabricated that incorporates a hydrophobic 1-butyl-1-methylpyrrolidinium bis(trifluromethylsulfonyl)imide ([Bmpy][NTf2]) IL electrolyte and Pt black electrode materials. The high viscosity of the ILs facilitates the formation of thin, ordered, and concentrated layers of ionic charges, and the inverse relationship of IL viscosity with temperature makes them especially suited for impedance sensing at low temperatures. The unique low-temperature properties of ILs together with EIS transduction mechanisms are shown to be sensitive and selective for continuously monitoring CO2 at a −15 to 40 °C temperature range via impedance changes at a specifically selected frequency at the open circuit potential (OCP). Molecular dynamics simulations revealed insights into the structure and dynamics of the IL at varying temperatures in the presence of methane and CO2 and provided potential explanations for the observed sensing results. The miniaturized and flexible planar electrochemical sensor with the [Bmpy][NTf2] electrolyte was tested repeatedly at subzero temperatures over a 58-day period, during which good stability and repeatability were obtained. The CO2 impedance sensor was further tested for sensing CO2 from soil samples and shows promising results for their use in real-time monitoring of greenhouse gas emissions in cold temperatures such as permafrost soils. 
    more » « less
  3. The friction and wear behavior of palladium (Pd)-rich amorphous alloy (Pd43Cu27Ni10P20) against 440C stainless steel under ionic liquids as lubricants, i.e., 1-nonyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]amide ([C9C1im][NTf2]), were investigated using a ball-on-disc reciprocating tribometer at ambient, 100 and 200 °C with different sliding speeds of 3 and 7 mm/s, whose results were compared to those from crystalline Pd samples. The measured coefficient of friction (COF) and wear were affected by both temperature and sliding speed. The COF of crystalline Pd samples dramatically increased when the temperature increased, whereas the COF of the amorphous Pd alloy samples remained low. As the sliding speed increased, the COF of both Pd samples showed decreasing trends. From the analysis of a 3D surface profilometer and scanning electron microscopy (SEM) with electron dispersive spectroscopy (EDS) data, three types of wear (i.e., delamination, adhesive, and abrasive wear) were observed on the crystalline Pd surfaces, whereas the amorphous Pd alloy surfaces produced abrasive wear only. In addition, X-ray photoelectron spectroscopy (XPS) measurements were performed to study the formation of tribofilm. It was found that the chemical reactivity at the contacting interface increased with temperature and sliding contact speed. The ionic liquids (ILs) were effective as lubricants when the applied temperature and sliding speed were 200 °C and 7 mm/s, respectively. 
    more » « less
  4. Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte’s concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment. 
    more » « less
  5. null (Ed.)
    Toxic gases, such as NOx, SOx, H2S and other S-containing gases, cause numerous harmful effects on human health even at very low gas concentrations. Reliable detection of various gases in low concentration is mandatory in the fields such as industrial plants, environmental monitoring, air quality assurance, automotive technologies and so on. In this paper, the recent advances in electrochemical sensors for toxic gas detections were reviewed and summarized with a focus on NO2, SO2 and H2S gas sensors. The recent progress of the detection of each of these toxic gases was categorized by the highly explored sensing materials over the past few decades. The important sensing performance parameters like sensitivity/response, response and recovery times at certain gas concentration and operating temperature for different sensor materials and structures have been summarized and tabulated to provide a thorough performance comparison. A novel metric, sensitivity per ppm/response time ratio has been calculated for each sensor in order to compare the overall sensing performance on the same reference. It is found that hybrid materials-based sensors exhibit the highest average ratio for NO2 gas sensing, whereas GaN and metal-oxide based sensors possess the highest ratio for SO2 and H2S gas sensing, respectively. Recently, significant research efforts have been made exploring new sensor materials, such as graphene and its derivatives, transition metal dichalcogenides (TMDs), GaN, metal-metal oxide nanostructures, solid electrolytes and organic materials to detect the above-mentioned toxic gases. In addition, the contemporary progress in SO2 gas sensors based on zeolite and paper and H2S gas sensors based on colorimetric and metal-organic framework (MOF) structures have also been reviewed. Finally, this work reviewed the recent first principle studies on the interaction between gas molecules and novel promising materials like arsenene, borophene, blue phosphorene, GeSe monolayer and germanene. The goal is to understand the surface interaction mechanism. 
    more » « less