This study is motivated by the fact that localization in Vehicle-to-Vehicle communication becomes a more critical problem because both the terminals of the communication link are in motion. The positional awareness merely based on GPS or local sensors has an error margin of around 10 meters, which can worsen in uncertain real-time conditions such as road topology and highway traffic. The paper analyses the relation between beamforming and beam alignment for highly directive antennas. This is more challenging in the events of localization of transceivers. When the subsystem models presented in this paper are taken into consideration, the joint vehicle dynamics-beamforming approach will improve the SNR for a constant power gain. The vehicle dynamics model is designed to be more realistic considering the non-linear acceleration based on the throttle-brake jerks due to internal engine noises as well as external traffic conditions. The prediction subsystem highlights the flaws of the Kalman Filter for non-linear parameters and the need for an Unscented Kalman Filter. The beamforming strategies are supported by the requirements of localization and the hardware constraints on the antenna due to phase shifters and the number of elements to yield more realistic results.
more »
« less
LiDAR-OSM-Based Vehicle Localization in GPS-Denied Environments by Using Constrained Particle Filter
Cross-modal vehicle localization is an important task for automated driving systems. This research proposes a novel approach based on LiDAR point clouds and OpenStreetMaps (OSM) via a constrained particle filter, which significantly improves the vehicle localization accuracy. The OSM modality provides not only a platform to generate simulated point cloud images, but also geometrical constraints (e.g., roads) to improve the particle filter’s final result. The proposed approach is deterministic without any learning component or need for labelled data. Evaluated by using the KITTI dataset, it achieves accurate vehicle pose tracking with a position error of less than 3 m when considering the mean error across all the sequences. This method shows state-of-the-art accuracy when compared with the existing methods based on OSM or satellite maps.
more »
« less
- Award ID(s):
- 2006738
- PAR ID:
- 10357879
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 22
- Issue:
- 14
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 5206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Having accurate building information is paramount for a plethora of applications, including humanitarian efforts, city planning, scientific studies, and navigation systems. While volunteered geographic information from sources such as OpenStreetMap (OSM) has good building geometry coverage, descriptive attributes such as the type of a building are sparse. To fill this gap, this study proposes a supervised learning-based approach to provide meaningful, semantic information for OSM data without manual intervention. We present a basic demonstration of our approach that classifies buildings into either residential or non-residential types for three study areas: Fairfax County in Virginia (VA), Mecklenburg County in North Carolina (NC), and the City of Boulder in Colorado (CO). The model leverages (i) available OSM tags capturing non-spatial attributes, (ii) geometric and topological properties of the building footprints including adjacent types of roads, proximity to parking lots, and building size. The model is trained and tested using ground truth data available for the three study areas. The results show that our approach achieves high accuracy in predicting building types for the selected areas. Additionally, a trained model is transferable with high accuracy to other regions where ground truth data is unavailable. The OSM and data science community are invited to build upon our approach to further enrich the volunteered geographic information in an automated manner.more » « less
-
A major challenge in cooperative sensing is to weight the measurements taken from the various sources to get an accurate result. Ideally, the weights should be inversely proportional to the error in the sensing information. However, previous cooperative sensor fusion approaches for autonomous vehicles use a fixed error model, in which the covariance of a sensor and its recognizer pipeline is just the mean of the measured covariance for all sensing scenarios. The approach proposed in this paper estimates error using key predictor terms that have high correlation with sensing and localization accuracy for accurate covariance estimation of each sensor observation. We adopt a tiered fusion model consisting of local and global sensor fusion steps. At the local fusion level, we add in a covariance generation stage using the error model for each sensor and the measured distance to generate the expected covariance matrix for each observation. At the global sensor fusion stage we add an additional stage to generate the localization covariance matrix from the key predictor term velocity and combines that with the covariance generated from the local fusion for accurate cooperative sensing. To showcase our method, we built a set of 1/10 scale model autonomous vehicles with scale accurate sensing capabilities and classified the error characteristics against a motion capture system. Results show an average and max improvement in RMSE when detecting vehicle positions of 1.42x and 1.78x respectively in a four-vehicle cooperative fusion scenario when using our error model versus a typical fixed error model.more » « less
-
Abstract We develop a generalized interpolation material point method (GIMPM) for the shallow shelf approximation (SSA) of ice flow. The GIMPM, which can be viewed as a particle version of the finite element method, is used here to solve the shallow shelf approximations of the momentum balance and ice thickness evolution equations. We introduce novel numerical schemes for particle splitting and integration at domain boundaries to accurately simulate the spreading of an ice shelf. The advantages of the proposed GIMPM‐SSA framework include efficient advection of history or internal state variables without diffusion errors, automated tracking of the ice front and grounding line at sub‐element scales, and a weak formulation based on well‐established conventions of the finite element method with minimal additional computational cost. We demonstrate the numerical accuracy and stability of the GIMPM using 1‐D and 2‐D benchmark examples. We also compare the accuracy of the GIMPM with the standard material point method (sMPM) and a reweighted form of the sMPM. We find that the grid‐crossing error is very severe for SSA simulations with the sMPM, whereas the GIMPM successfully mitigates this error. While the grid‐crossing error can be reasonably reduced in the sMPM by implementing a simple material point reweighting scheme, this approach it not as accurate as the GIMPM. Thus, we illustrate that the GIMPM‐SSA framework is viable for the simulation of ice sheet‐shelf evolution and enables boundary tracking and error‐free advection of history or state variables, such as ice thickness or damage.more » « less
-
Dead reckoning is a promising yet often overlooked smartphone-based indoor localization technology that relies on phone-mounted sensors for counting steps and estimating walking directions, without the need for extensive sensor or landmark deployment. However, misalignment between the phone’s direction and the user’s actual movement direction can lead to unreliable direction estimates and inaccurate location tracking. To address this issue, this paper introduces SWiLoc (Smartphone and WiFi-based Localization), an enhanced direction correction system that integrates passive WiFi sensing with smartphone-based sensing to form Correction Zones. Our two-phase approach accurately measures the user’s walking directions when passing through a Correction Zone and further refines successive direction estimates outside the zones, enabling continuous and reliable tracking. In addition to direction correction, SWiLoc extends its capabilities by incorporating a localization technique that leverages corrected directions to achieve precise user localization. This extension significantly enhances the system’s applicability for high-accuracy localization tasks. Additionally, our innovative Fresnel zone-based approach, which utilizes unique hardware configurations and a fundamental geometric model, ensures accurate and robust direction estimation, even in scenarios with unreliable walking directions. We evaluate SWiLoc across two real-world environments, assessing its performance under varying conditions such as environmental changes, phone orientations, walking directions, and distances. Our comprehensive experiments demonstrate that SWiLoc achieves an average 75th percentile error of 8.89 degrees in walking direction estimation and an 80th percentile error of 1.12 m in location estimation. These figures represent reductions of 64% and 49%, respectively for direction and location estimation error, over existing state-of-the-art approaches.more » « less
An official website of the United States government

