skip to main content


Title: Dual Mode Localization Assisted Beamforming for mmWave V2V Communication
This study is motivated by the fact that localization in Vehicle-to-Vehicle communication becomes a more critical problem because both the terminals of the communication link are in motion. The positional awareness merely based on GPS or local sensors has an error margin of around 10 meters, which can worsen in uncertain real-time conditions such as road topology and highway traffic. The paper analyses the relation between beamforming and beam alignment for highly directive antennas. This is more challenging in the events of localization of transceivers. When the subsystem models presented in this paper are taken into consideration, the joint vehicle dynamics-beamforming approach will improve the SNR for a constant power gain. The vehicle dynamics model is designed to be more realistic considering the non-linear acceleration based on the throttle-brake jerks due to internal engine noises as well as external traffic conditions. The prediction subsystem highlights the flaws of the Kalman Filter for non-linear parameters and the need for an Unscented Kalman Filter. The beamforming strategies are supported by the requirements of localization and the hardware constraints on the antenna due to phase shifters and the number of elements to yield more realistic results.  more » « less
Award ID(s):
2010366
NSF-PAR ID:
10327389
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Vehicular Technology
ISSN:
0018-9545
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less
  2. Real-time control of a fleet of Connected and Automated Vehicles (CAV) for Cooperative Adaptive Cruise Control (CACC) is a challenging problem concerning time delays (from sensing, communication, and computation) and actuator lag. This paper proposes a real-time predictive distributed CACC control framework that addresses time delays and actuator lag issues in the real-time networked control systems. We first formulate a Kalman Filter-based real-time current driving state prediction model to provide more accurate initial conditions for the distributed CACC controller by compensating time delays using sensing data from multi-rate onboard sensors (e.g., Radar, GPS, wheel speed, and accelerometer), and status-sharing and intent-sharing data in BSM via V2V communication. We solve the prediction model using a sequential Kalman Filter update process for multi-rate sensing data to improve computational efficiency. We propose a real-time distributed MPC-based CACC controller with actuator lag and intent-sharing information for each CAV with the delay-compensated predicted current driving states as initial conditions. We implement the real-time predictive distributed CACC control algorithms and conduct numerical analyses to demonstrate the benefits of intent-sharing-based distributed computing, delay compensation, and actuator lag consideration on string stability under various traffic dynamics. 
    more » « less
  3. Autonomous driving in dense urban areas presents an especially difficult task. First, globally localizing information, such as GPS signal, often proves to be unreliable in such areas due to signal shadowing and multipath errors. Second, the high‐definition environmental maps with sufficient information for autonomous navigation require a large amount of data to be collected from these areas, significant postprocessing of this data to generate the map, and then continual maintenance of the map to account for changes in the environment. This paper addresses the issue of autonomous driving in urban environments by investigating algorithms and an architecture to enable fully functional autonomous driving with little to no reliance on map‐based measurements or GPS signals. An extended Kalman filter with odometry, compass, and sparse landmark measurements as inputs is used to provide localization. Real‐time detection and estimation of key roadway features are used to create an understanding of the surrounding static scene. Navigation is accomplished by a compass‐based navigation control law. Experimental scene understanding results are obtained using computer vision and estimation techniques and demonstrate the ability to probabilistically infer key features of an intersection in real time. Key results from Monte Carlo studies demonstrate the proposed localization and navigation methods. These tests provide success rates of urban navigation under different environmental conditions, such as landmark density, and show that the vehicle can navigate to a goal nearly 10 km away without any external pose update at all. Field tests validate these simulated results and demonstrate that, for given test conditions, an expected range can be determined for a given success rate.

     
    more » « less
  4. Real-time traffic data at intersections is significant for development of adaptive traffic light control systems. Sensors such as infrared radiation and GPS are not capable of providing detailed traffic information. Compared with these sensors, surveillance cameras have the potential to provide real scenes for traffic analysis. In this research, a You Only Look Once (YOLO)-based algorithm is employed to detect and track vehicles from traffic videos, and a predefined road mask is used to determine traffic flow and turning events in different roads. A Kalman filter is used to estimate and predict vehicle speed and location under the condition of background occlusion. The result shows that the proposed algorithm can identify traffic flow and turning events at a root mean square error (RMSE) of 10. The result shows that a Kalman filter with an intersection of union (IOU)-based tracker performs well at the condition of background occlusion. Also, the proposed algorithm can detect and track vehicles at different optical conditions. Bad weather and night-time will influence the detecting and tracking process in areas far from traffic cameras. The traffic flow extracted from traffic videos contains road information, so it can not only help with single intersection control, but also provides information for a road network. The temporal characteristic of observed traffic flow gives the potential to predict traffic flow based on detected traffic flow, which will make the traffic light control more efficient. 
    more » « less
  5. Dynamic network topology can pose important challenges to communication and control protocols in networks of autonomous vehicles. For instance, maintaining connectivity is a key challenge in unmanned aerial vehicle (UAV) networks. However, tracking and computational resources of the observer module might not be sufficient for constant monitoring of all surrounding nodes in large-scale networks. In this paper, we propose an optimal measurement policy for network topology monitoring under constrained resources. To this end, We formulate the localization of multiple objects in terms of linear networked systems and solve it using Kalman filtering with intermittent observation. The proposed policy includes two sequential steps. We first find optimal measurement attempt probabilities for each target using numerical optimization methods to assign the limited number of resources among targets. The optimal resource allocation follows a waterfall-like solution to assign more resources to targets with lower measurement success probability. This provides a 10% to 60% gain in prediction accuracy. The second step is finding optimal on-off patterns for measurement attempts for each target over time. We show that a regular measurement pattern that evenly distributed resources over time outperforms the two extreme cases of using all measurement resources either in the beginning or at the end of the measurement cycle. Our proof is based on characterizing the fixed-point solution of the error covariance matrix for regular patterns. Extensive simulation results confirm the optimality of the most alternating pattern with up to 10-fold prediction improvement for different scenarios. These two guidelines define a general policy for target tracking under constrained resources with applications to network topology prediction of autonomous systems 
    more » « less