skip to main content

Title: Parametric resonance of spin waves in ferromagnetic nanowires tuned by spin Hall torque
We present a joint experimental and theoretical study of parametric resonance of spin wave eigenmodes in Ni80Fe20/Pt bilayer nanowires. Using electrically detected magnetic resonance, we measure the spectrum of spin wave eigenmodes in transversely magnetized nanowires and study parametric excitation of these eigenmodes by a microwave magnetic field. We also develop an analytical theory of spin wave eigenmodes and their parametric excitation in the nanowire geometry that takes into account magnetic dilution at the nanowire edges. We measure tuning of the parametric resonance threshold by antidamping spin Hall torque from a direct current for the edge and bulk eigenmodes, which allows us to independently evaluate frequency, damping and ellipticity of the modes. We find good agreement between theory and experiment for parametric resonance of the bulk eigenmodes but signifi cant discrepancies arise for the edge modes. The data reveals that ellipticity of the edge modes is signifi cantly lower than expected, which can be attributed to strong modi fication of magnetism at the nanowire edges. Our work demonstrates that parametric resonance of spin wave eigenmodes is a sensitive probe of magnetic properties at edges of thin-fi lm nanomagnets.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Physical review
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr 14−x Ca x Cu 24 O 41 (SCCO) using Cu L 3 -edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with high ( x  = 12.2) and without ( x  = 0) Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2 T) excitations ( x  = 0) to weakly-dispersive gapped modes at an energy of 280 meV ( x  = 12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x  = 12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving Δ S  = 0 scattering from the predominant Δ S  = 1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the Δ S  = 0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO 4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase frommore »which superconductivity emerges in SCCO at elevated pressures.« less
  2. The momentum and spin of charge carriers in the topological insulators are constrained to be perpendicular to each other due to the strong spin–orbit coupling. We have investigated this unique spin–momentum locking property in Sb 2 Te 3 topological insulator nanowires by injecting spin-polarized electrons through magnetic tunnel junction electrodes. Non-local voltage measurements exhibit an asymmetry with respect to the magnetic field applied perpendicular to the nanowire channel, which is remarkably different from that of a non-local measurement in a channel that lacks spin–momentum locking. In stark contrast to conventional non-local spin valves, simultaneous reversal of magnetic moments of all magnetic contacts to the Sb 2 Te 3 nanowire alters the non-local voltage. This unusual asymmetry is a clear signature of the spin–momentum locking in the Sb 2 Te 3 nanowire surface states.
  3. Spin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin‐wave propagation needed for information processing devices. The organic‐based magnet [V(TCNE)x; TCNE = tetracyanoethylene; x ≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non‐coherent spin waves on various modes in V(TCNE)x is demonstrated and show that the angular momentum carried by microwave‐excited coherent spin waves in a V(TCNE)x film can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect. The spin pumping efficiency can be tuned by choosing different excited spin wave modes in the V(TCNE)x film. In addition, it is shown that non‐coherent spin waves in a V(TCNE)x film, excited thermally via the spin Seebeck effect, can also be used as spin pumping source that generates an electrical signal in Pt with a sign change in accordance with the magnetization switching of the V(TCNE)x. Combining coherent and non‐coherent spin wave detection, the spin pumping efficiency can be thermally controlled, and new insight is gained for the spintronic applications of spin wave modes in organic‐basedmore »magnets.« less
  4. Disorder and many body interactions are known to impact transport and thermalization in competing ways, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13 C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13 C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength, which we attribute to effective carbon-carbon interactions mediated by the electronic spin ensemble. In particular, observations across the full range of hyperfine couplings indicate the nuclear spin diffusion constant takes values up to two orders of magnitude greater than that expected from homo-nuclear spin couplings.
  5. Abstract Englacial water transport is an integral part of the glacial hydrologic system, yet the geometry of englacial structures remains largely unknown. In this study, we explore the excitation of fluid resonance by small amplitude waves as a probe of englacial geometry. We model a hydraulic network consisting of one or more tabular cracks that intersect a cylindrical conduit, subject to oscillatory wave motion initiated at the water surface. Resulting resonant frequencies and quality factors are diagnostic of fluid properties and geometry of the englacial system. For a single crack–conduit system, the fundamental mode involves gravity-driven fluid sloshing between the conduit and the crack, at frequencies between 0.02 and 10 Hz for typical glacial parameters. Higher frequency modes include dispersive Krauklis waves generated within the crack and tube waves in the conduit. But we find that crack lengths are often well constrained by fundamental mode frequency and damping rate alone for settings that include alpine glaciers and ice sheets. Branching crack geometry and dip, ice thickness and source excitation function help define limits of crack detectability for this mode. In general, we suggest that identification of eigenmodes associated with wave motion in time series data may provide a pathway towardmore »inferring englacial hydrologic structures.« less