skip to main content


Title: A living tool for the continued exploration of microplastic toxicity
Abstract Throughout the past decade, many studies have reported adverse effects in biota following microplastic exposure. Yet, the field is still emerging as the current understanding of microplastic toxicity is limited. At the same time, recent legislative mandates have required environmental regulators to devise strategies to mitigate microplastic pollution and develop health-based thresholds for the protection of human and ecosystem health. The current publication rate also presents a unique challenge as scientists, environmental managers, and other communities may find it difficult to keep up with microplastic research as it rapidly evolves. At present, there is no tool that compiles and synthesizes the data from these studies to allow for visualization, interpretation, or analysis. Here, we present the Toxicity of Microplastics Explorer (ToMEx), an open access database and open source accompanying R Shiny web application that enables users to upload, search, visualize, and analyze microplastic toxicity data. Though ToMEx was originally created to facilitate the development of health-based thresholds to support California legislations, maintaining the database by the greater scientific community will be invaluable to furthering research and informing policies globally. The database and web applications may be accessed at https://microplastics.sccwrp.org/ . Graphical Abstract  more » « less
Award ID(s):
1935028
NSF-PAR ID:
10357890
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Microplastics and Nanoplastics
Volume:
2
Issue:
1
ISSN:
2662-4966
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is definitive evidence that microplastics, defined as plastic particles less than 5 mm in size, are ubiquitous in the environment and can cause harm to aquatic organisms. These findings have prompted legislators and environmental regulators to seek out strategies for managing risk. However, microplastics are also an incredibly diverse contaminant suite, comprising a complex mixture of physical and chemical characteristics (e.g., sizes, morphologies, polymer types, chemical additives, sorbed chemicals, and impurities), making it challenging to identify which particle characteristics might influence the associated hazards to aquatic life. In addition, there is a lack of consensus on how microplastic concentrations should be reported. This not only makes it difficult to compare concentrations across studies, but it also begs the question as to which concentration metric may be most informative for hazard characterization. Thus, an international panel of experts was convened to identify 1) which concentration metrics (e.g., mass or count per unit of volume or mass) are most informative for the development of health-based thresholds and risk assessment and 2) which microplastic characteristics best inform toxicological concerns. Based on existing knowledge, it is recommended that microplastic concentrations in toxicity tests are calculated from both mass and count at minimum, though ideally researchers should report additional metrics, such as volume and surface area, which may be more informative for specific toxicity mechanisms. Regarding particle characteristics, there is sufficient evidence to conclude that particle size is a critical determinant of toxicological outcomes, particularly for the mechanisms of food dilution and tissue translocation . 
    more » « less
  2. Abstract To assess the potential risk of microplastic exposure to humans and aquatic ecosystems, reliable toxicity data is needed. This includes a more complete foundational understanding of microplastic toxicity and better characterization of the hazards they may present. To expand this understanding, an international group of experts was convened in 2020–2021 to identify critical thresholds at which microplastics found in drinking and ambient waters present a health risk to humans and aquatic organisms. However, their findings were limited by notable data gaps in the literature. Here, we identify those shortcomings and describe four categories of research recommendations needed to address them: 1) adequate particle characterization and selection for toxicity testing; 2) appropriate experimental study designs that allow for the derivation of dose-response curves; 3) establishment of adverse outcome pathways for microplastics; and 4) a clearer understanding of microplastic exposure, particularly for human health. By addressing these four data gaps, researchers will gain a better understanding of the key drivers of microplastic toxicity and the concentrations at which adverse effects may occur, allowing a better understanding of the potential risk that microplastics exposure might pose to human and aquatic ecosystems. 
    more » « less
  3. Abstract Microplastic particles (MPs) are ubiquitous across a wide range of aquatic habitats but determining an appropriate level of risk management is hindered by a poor understanding of environmental risk. Here, we introduce a risk management framework for aquatic ecosystems that identifies four critical management thresholds, ranging from low regulatory concern to the highest level of concern where pollution control measures could be introduced to mitigate environmental emissions. The four thresholds were derived using a species sensitivity distribution (SSD) approach and the best available data from the peer-reviewed literature. This included a total of 290 data points extracted from 21 peer-reviewed microplastic toxicity studies meeting a minimal set of pre-defined quality criteria. The meta-analysis resulted in the development of critical thresholds for two effects mechanisms: food dilution with thresholds ranging from ~ 0.5 to 35 particles/L, and tissue translocation with thresholds ranging from ~ 60 to 4100 particles/L. This project was completed within an expert working group, which assigned high confidence to the management framework and associated analytical approach for developing thresholds, and very low to high confidence in the numerical thresholds. Consequently, several research recommendations are presented, which would strengthen confidence in quantifying threshold values for use in risk assessment and management. These recommendations include a need for high quality toxicity tests, and for an improved understanding of the mechanisms of action to better establish links to ecologically relevant adverse effects. 
    more » « less
  4. Reports of plastics, at higher levels than previously thought, in the water that we drink and the air that we breathe, are generating considerable interest and concern. Plastics have been recorded in almost every environment in the world with estimates on the order of trillions of microplastic pieces. Yet, this may very well be an underestimate of plastic pollution as a whole. Once microplastics (<5 mm) break down in the environment, they nominally enter the nanoscale (<1,000 nm), where they cannot be seen by the naked eye or even with the use of a typical laboratory microscope. Thus far, research has focused on plastics in the macro- (>25 mm) and micro-size ranges, which are easier to detect and identify, leaving large knowledge gaps in our understanding of nanoplastic debris. Our ability to ask and answer questions relating to the transport, fate, and potential toxicity of these particles is disadvantaged by the detection and identification limits of current technology. Furthermore, laboratory exposures have been substantially constrained to the study of commercially available nanoplastics; i.e., polystyrene spheres, which do not adequately reflect the composition of environmental plastic debris. While a great deal of plastic-focused research has been published in recent years, the pattern of the work does not answer a number of key factors vital to calculating risk that takes into account the smallest plastic particles; namely, sources, fate and transport, exposure measures, toxicity and effects. These data are critical to inform regulatory decision making and to implement adaptive management strategies that mitigate risk to human health and the environment. This paper reviews the current state-of-the-science on nanoplastic research, highlighting areas where data are needed to establish robust risk assessments that take into account plastics pollution. Where nanoplastic-specific data are not available, suggested substitutions are indicated. 
    more » « less
  5. Abstract. Over the last half century, the McMurdo Dry Valleys (MDV)of East Antarctica have become a globally important site for scientificresearch and environmental monitoring. Historical data can make importantcontributions to current research activities and environmental management inAntarctica but tend to be widely scattered and difficult to access. Weaddress this need in the MDV by compiling over 5000 historical photographs,sketches, maps, oral interviews, publications, and other archival resourcesinto an online digital archive. The data have been digitized andgeoreferenced using a standardized metadata structure, which enablesintuitive searches and data discovery via an online interface. The ultimateaim of the archive is to create as comprehensive as possible a record ofhuman activity in the MDV to support ongoing research, management, andconservation efforts. This is a valuable tool for scientists seeking tounderstand the dynamics of change in lakes, glaciers, and other physicalsystems, as well as humanistic inquiry into the history of the SouthernContinent. In addition to providing benchmarks for understanding change overtime, the data can help target field sampling for studies working under theassumption of a pristine landscape by enabling researchers to identify thedate and extent of past human activities. The full database is accessiblevia a web browser-based interface hosted by the McMurdo Long Term EcologicalResearch site: http://mcmurdohistory.lternet.edu/ (last access: 5 May 2020). The completemetadata data for all resources in the database are also available at theEnvironmental Data Initiative: https://doi.org/10.6073/pasta/6744cb28a544fda827805db123d36557(Howkins et al., 2019). 
    more » « less