skip to main content


Title: Virtual DPD Neural Network Predistortion for OFDM-based MU-Massive MIMO
The nonlinearities of power amplifiers in massive MIMO arrays introduce unwanted spectral regrowth, which is typically avoided via digital predistortion at each amplifier. However, as the number of base station antennas scales up, so does the computational burden of per-antenna linearization. This work introduces a neural-network virtual digital predistortion (vDPD) scheme that operates before the linear precoder for OFDM-based massive MU-MIMO systems. By applying predistortion before the precoder, complexity scales primarily with the number of users. We can achieve comparable linearization along the user beams by training our neural network based on the memory polynomial, predistortion-per-antenna approach. We verify our algorithm through an exhaustive simulator that includes high-order amplifier nonlinearities, memory effects, and variance across the amplifier models.  more » « less
Award ID(s):
2016727
NSF-PAR ID:
10357918
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 55th Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
376 to 380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Digital predistortion is the process of using digital signal processing to correct nonlinearities caused by the analog RF front-end of a wireless transmitter. These nonlinearities contribute to adjacent channel leakage, degrade the error vector magnitude of transmitted signals, and often force the transmitter to reduce its transmission power into a more linear but less power-efficient region of the device. Most predistortion techniques are based on polynomial models with an indirect learning architecture which have been shown to be overly sensitive to noise. In this work, we use neural network based predistortion with a novel neural network training method that avoids the indirect learning architecture and that shows significant improvements in both the adjacent channel leakage ratio and error vector magnitude. Moreover, we show that, by using a neural network based predistorter, we are able to achieve a 42% reduction in latency and 9.6% increase in throughput on an FPGA accelerator with 15% fewer multiplications per sample when compared to a similarly performing memory-polynomial implementation. 
    more » « less
  2. Recently a number of nonlinear precoding algorithms have been developed for designing a downlink transmit signal that is constrained by some nonlinearity, such as one-bit quantization, power-amplifier saturation or constant modulus. These methods use iterative search algorithms to directly design the signal that is transmitted from each antenna. Since the dimension of the search space equals the number of antennas, the computational complexity of these approaches can be high for massive MIMO scenarios. Thus, in this paper we pose the problem in a smaller dimensional space by constraining the signal prior to the nonlinearity to be the output of a linear precoder. The search is then over the vector of predistorted symbols at the input to the linear precoder, which is typically much smaller than the number of antennas. We focus on algorithms that minimize the bit error rate at the receivers, and show that performance can be obtained that is similar to algorithms that operate directly in the antenna domain. 
    more » « less
  3. null (Ed.)
    We demonstrate digital predistortion (DPD) using a novel, neural-network (NN) method to combat the nonlinearities in power amplifiers (PAs), which limit the power efficiency of mobile devices, increase the error vector magnitude, and cause inadequate spectral containment. DPD is commonly done with polynomial-based methods that use an indirect-learning architecture (ILA) which can be computationally intensive, especially for mobile devices, and overly sensitive to noise. Our approach using NNs avoids the problems associated with ILAs by first training a NN to model the PA then training a predistorter by backpropagating through the PA NN model. The NN DPD effectively learns the unique PA distortions, which may not easily fit a polynomial-based model, and hence may offer a favorable tradeoff between computation overhead and DPD performance. We demonstrate the performance of our NN method using two different power amplifier systems and investigate the complexity tradeoffs. 
    more » « less
  4. The primary source of nonlinear distortion in wireless transmitters is the power amplifier (PA). Conventional digital predistortion (DPD) schemes use high-order polynomials to accurately approximate and compensate for the nonlinearity of the PA. This is not practical for scaling to tens or hundreds of PAs in massive multiple-input multiple-output (MIMO) systems. There is more than one candidate precoding matrix in a massive MIMO system because of the excess degrees-of-freedom (DoFs), and each precoding matrix requires a different DPD polynomial order to compensate for the PA nonlinearity. This paper proposes a low-order DPD method achieved by exploiting massive DoFs of next-generation front ends. We propose a novel indirect learning structure which adapts the channel and PA distortion iteratively by cascading adaptive zero forcing precoding and DPD. Our solution uses a 3rd order polynomial to achieve the same performance as the conventional DPD using an 11th order polynomial for a 10010 massive MIMO configuration. Experimental results show a 70% reduction in computational complexity, enabling ultra-low latency communications. 
    more » « less
  5. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less