skip to main content

Title: Underwater Sound Characteristics of a Ship with Controllable Pitch Propeller
The time-dependent spectral characteristics of underwater sound radiated by an ocean vessel has complex dependencies on ship machinery, propeller dynamics, hydrodynamics of ship exhaust and motion, as well as ship board activities. Here the underwater sound radiated by a ship equipped with a controllable pitch propeller (CPP) is analyzed and quantified via its (i) power spectral density for signal energetics, (ii) temporal coherence for machinery tonal sound, and (iii) spectral coherence for propeller amplitude-modulated cavitation noise. Frequency-modulated (FM) tonal signals are also characterized in terms of their frequency variations. These characteristics are compared for different propeller pitch ratios ranging from 20% to 82% at fixed propeller revolutions per minute (RPM). The efficacy and robustness of ship parameter estimation at different pitches are discussed. Finally, analysis of one special measurement is provided, when ship changes speed, propeller pitch and RPM over the duration of the measurement. The 50% pitch is found to be a crucial point for this ship about which tonal characteristics of its underwater radiated sound attain their peak values, while broadband sound and associated spectral coherences are at a minimum. The findings here elucidate the effects of pitch variation on underwater sound radiated by ships with controllable pitch propellers and has applications in ship design and underwater noise mitigation.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Marine Science and Engineering
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple mechanized ocean vessels, including both surface ships and submerged vehicles, can be simultaneously monitored over instantaneous continental-shelf scale regions >10,000 km 2 via passive ocean acoustic waveguide remote sensing. A large-aperture densely-sampled coherent hydrophone array system is employed in the Norwegian Sea in Spring 2014 to provide directional sensing in 360 degree horizontal azimuth and to significantly enhance the signal-to-noise ratio (SNR) of ship-radiated underwater sound, which improves ship detection ranges by roughly two orders of magnitude over that of a single hydrophone. Here, 30 mechanized ocean vessels spanning ranges from nearby to over 150 km from the coherent hydrophone array, are detected, localized and classified. The vessels are comprised of 20 identified commercial ships and 10 unidentified vehicles present in 8 h/day of Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) observation for two days. The underwater sounds from each of these ocean vessels received by the coherent hydrophone array are dominated by narrowband signals that are either constant frequency tonals or have frequencies that waver or oscillate slightly in time. The estimated bearing-time trajectory of a sequence of detections obtained from coherent beamforming are employed to determine the horizontal location of each vessel using the Moving Array Triangulation (MAT) technique. For commercial ships present in the region, the estimated horizontal positions obtained from passive acoustic sensing are verified by Global Positioning System (GPS) measurements of the ship locations found in a historical Automatic Identification System (AIS) database. We provide time-frequency characterizations of the underwater sounds radiated from the commercial ships and the unidentified vessels. The time-frequency features along with the bearing-time trajectory of the detected signals are applied to simultaneously track and distinguish these vessels. 
    more » « less
  2. View Video Presentation: The ability to accurately and rapidly assess unsteady interactional aerodynamics is a shortcoming and bottleneck in the design of various next-generation aerospace systems: from electric vertical takeoff and landing (eVTOL) aircraft to airborne wind energy (AWE) and wind farms. In this study, we present a meshless CFD framework based on the reformulated vortex particle method (rVPM) for the analysis of complex interactional aerodynamics. The rVPM is a large eddy simulation (LES) solving the Navier-Stokes equations in their vorticity form. It uses a meshless Lagrangian scheme, which not only avoids the hurdles of mesh generation, but it also conserves the vortical structure of wakes over long distances with minimal numerical dissipation, while being 100x faster than conventional mesh-based LES. Wings and rotating blades are introduced in the computational domain through actuator line and actuator surface models. Simulations are coupled with an aeroacoustics solver to predict tonal and broadband noise radiated by rotors. The framework, called FLOWUnsteady, is hereby released as an open-source code and extensively validated. Validation studies published in previous work by the authors are summarized, showcasing rotors across operating conditions with a rotor in hover, propellers, a wind turbine, and two side-by-side rotors in hover. Validation of rotor-wing interactions is presented simulating a tailplane with tip-mounted propellers and a blown wing with propellers mounted mid-span. The capabilities of the framework are showcased through the simulation of a tiltwing eVTOL vehicle and an AWE wind-harvesting aircraft, featuring rotors with variable RPM, variable pitch, tilting of wings and rotors, non-trivial flight paths, and complex aerodynamic interactions. 
    more » « less
  3. Abstract Numerous studies have suggested that the perception of a target sound stream (or source) can only be segregated from a complex acoustic background mixture if the acoustic features underlying its perceptual attributes (e.g., pitch, location, and timbre) induce temporally modulated responses that are mutually correlated (or coherent), and that are uncorrelated (incoherent) from those of other sources in the mixture. This “temporal coherence” hypothesis asserts that attentive listening to one acoustic feature of a target enhances brain responses to that feature but would also concomitantly (1) induce mutually excitatory influences with other coherently responding neurons, thus enhancing (or binding) them all as they respond to the attended source; by contrast, (2) suppressive interactions are hypothesized to build up among neurons driven by temporally incoherent sound features, thus relatively reducing their activity. In this study, we report on EEG measurements in human subjects engaged in various sound segregation tasks that demonstrate rapid binding among the temporally coherent features of the attended source regardless of their identity (pure tone components, tone complexes, or noise), harmonic relationship, or frequency separation, thus confirming the key role temporal coherence plays in the analysis and organization of auditory scenes. 
    more » « less
  4. Katydids produce sound for signaling and communication by stridulation of the tegmina. Unlike crickets, most katydids are known to sing at ultrasonic frequencies. This has drawn interest in the investigation of the biophysics of ultrasonic sound production, detection, evolution, and ecology (including predator–prey interactions) of these katydids. However, most of these studies are based on species from the Neotropics, while little is known about katydid species from the hyperdiverse region of Southeast Asia. To address this, a concerted effort to document, record, and describe the calling songs of Southeast Asian katydids, especially species that call at ultrasonic frequencies, was made. A study spanning two years (2018–2020) in the Malay Peninsula (Singapore and Malaysia), Borneo (Brunei Darussalam and Sabah), and the Philippines revealed previously unknown calls of 24 katydid species from four subfamilies. The calling songs of Southeast Asian katydid species are highly diversified in terms of time and frequency. Call structure can range from isolated syllables (e.g.,Holochlora), continuous trills (e.g.,Axylus philippinus), to short pulse-trains (e.g.,Euanisous teuthroides) and complex echemes (e.g.,Conocephalusspp.), with 87.5% of species having ultrasonic peak frequencies and 12.5% being considered extreme ultrasonic callers (peak frequency >40 kHz). The call spectrum ranges from tonal (e.g., spectral entropy is 6.8 inCasignetasp. 2) to resonant (entropy is 8.8 inConocephalus cognatus). Of the 24 species whose calls are described here, we imaged and described the sound-producing structures of 18. This study provides a preliminary overview of the acoustic diversity of katydids in Southeast Asia, and the authors hope to inspire further investigation into the bioacoustics of little-known katydids from these areas. Amassing a database of calling songs and sound-producing organ illustrations from different species is important to address taxonomic impediments while advancing our knowledge about the bioacoustics of Southeast Asian katydids.

    more » « less
  5. Abstract —An approach is proposed for estimating the dispersion characteristics of waveguide modes from analysis of ship noise recorded by two closely spaced and synchronized vertical arrays. This approach was used for an experimental study of the mode structure of a low-frequency sound field in a shallow-water waveguide with a gas-saturated bottom in a wide frequency band (from 20 to 250 Hz). The experiment was carried out in Lake Kinneret (Israel), known for its high methane bubble content in the sedimentary layer (~1%) and, consequently, for the low sound speed in this layer (~100 m/s). The maximum depth in the area of the experiment was 40.4 m. The receiving system consisted of two 27 m vertical arrays spaced 40 m from each other and covering part of the waveguide below the thermocline. The noise source, the R/V Hermona , moved along a straight line connecting the arrays at distances of up to 1 km from them. The approach made it possible to isolate the frequency dependences of the phase velocities for the first 12 modes; these dependences proved close to those for a waveguide with an perfectly soft bottom, except for the frequency region near the cutoff frequency. The limitations and possible development of the technique are discussed. 
    more » « less