skip to main content


Title: Where have all the interstellar silicon carbides gone?
ABSTRACT The detection of the 11.3$\, {\rm \mu m}$ emission feature characteristic of the Si–C stretch in carbon-rich evolved stars reveals that silicon carbide (SiC) dust grains are condensed in the outflows of carbon stars. SiC dust could be a significant constituent of interstellar dust since it is generally believed that carbon stars inject a considerable amount of dust into the interstellar medium (ISM). The presence of SiC dust in the ISM is also supported by the identification of pre-solar SiC grains of stellar origin in primitive meteorites. However, the 11.3$\,\mu {\rm m}$ absorption feature of SiC has never been seen in the ISM, and oxidative destruction of SiC is often invoked. In this work, we quantitatively explore the destruction of interstellar SiC dust through oxidation based on molecular dynamics simulations and density functional theory calculations. We find that the reaction of an oxygen atom with SiC molecules and clusters is exothermic and could cause CO-loss. Nevertheless, even if this is extrapolable to bulk SiC dust, the destruction rate of SiC dust through oxidation could still be considerably smaller than the (currently believed) injection rate from carbon stars. Therefore, the lack of the 11.3$\,\mu{\rm m}$ absorption feature of SiC dust in the ISM remains a mystery. A possible solution may lie in the currently believed stellar injection rate of SiC (which may have been overestimated) and/or the size of SiC dust (which may actually be considerably smaller than submicron in size).  more » « less
Award ID(s):
1816411
NSF-PAR ID:
10357935
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5231 to 5236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present an axi-symmetric model for the ultraviolet (UV)-to-submillimetre (submm) images of the nearly face-on spiral galaxy NGC 628. It was calculated using a radiative transfer (RT) code, accounting for the absorption and re-emission of starlight by dust in the interstellar medium of this galaxy. The code incorporates emission from Polycyclic Aromatic Hydrocarbons, anisotropic scattering, and stochastic heating of the grains. This is the second successful modelling of a face-on spiral galaxy with RT methods, whereby the large-scale geometry of stars and dust is self-consistently determined. The solution was obtained by fitting azimuthally averaged profiles in the UV, optical, and submm. The model predicts remarkably well all characteristics of the profiles, including the increase by a factor of 1.8 of the scale length of the infrared emissivity between 70 and 500 $\mu$m. We find that NGC 628 did not undergo an efficient inside-out disc growth, as predicted by semi-analytical hierarchical models for galaxy formation. We also find large amounts of dust grains at large radii, which could involve efficient transport mechanisms from the inner disc. Our results show that $71{{\ \rm per\ cent}}$ of the dust emission in NGC 628 is powered by the young stellar populations, with the old stellar populations from the bulge contributing $65{{\ \rm per\ cent}}$ to the heating of the dust in the central region (R < 0.5 kpc). The derived star formation rate is $\rm SFR=2.00\pm 0.15\, {\rm M}_{\odot }{\rm yr}^{-1}$.

     
    more » « less
  2. ABSTRACT

    Interstellar chemistry is important for galaxy formation, as it determines the rate at which gas can cool, and enables us to make predictions for observable spectroscopic lines from ions and molecules. We explore two central aspects of modelling the chemistry of the interstellar medium (ISM): (1) the effects of local stellar radiation, which ionizes and heats the gas, and (2) the depletion of metals on to dust grains, which reduces the abundance of metals in the gas phase. We run high-resolution (400 M⊙ per baryonic particle) simulations of isolated disc galaxies, from dwarfs to Milky Way-mass, using the fire galaxy formation models together with the chimes non-equilibrium chemistry and cooling module. In our fiducial model, we couple the chemistry to the stellar fluxes calculated from star particles using an approximate radiative transfer scheme; and we implement an empirical density-dependent prescription for metal depletion. For comparison, we also run simulations with a spatially uniform radiation field, and without metal depletion. Our fiducial model broadly reproduces observed trends in H i and H2 mass with stellar mass, and in line luminosity versus star formation rate for [C ii]$_{158 \rm {\mu m}}$, [O i]$_{63 \rm {\mu m}}$, [O iii]$_{88 \rm {\mu m}}$, [N ii]$_{122 \rm {\mu m}}$, and H α6563Å. Our simulations with a uniform radiation field predict fainter luminosities, by up to an order of magnitude for [O iii]$_{88 \rm {\mu m}}$ and H α6563Å, while ignoring metal depletion increases the luminosity of carbon and oxygen lines by a factor ≈ 2. However, the overall evolution of the galaxy is not strongly affected by local stellar fluxes or metal depletion, except in dwarf galaxies where the inclusion of local fluxes leads to weaker outflows and hence higher gas fractions.

     
    more » « less
  3. ABSTRACT

    Recent years have seen growing interest in post-processing cosmological simulations with radiative transfer codes to predict observable fluxes for simulated galaxies. However, this can be slow, and requires a number of assumptions in cases where simulations do not resolve the interstellar medium (ISM). Zoom-in simulations better resolve the detailed structure of the ISM and the geometry of stars and gas; however, statistics are limited due to the computational cost of simulating even a single halo. In this paper, we make use of a set of high-resolution, cosmological zoom-in simulations of massive ($M_{\star }\gtrsim 10^{10.5}\, \rm {M_{\odot }}$ at z = 2), star-forming galaxies from the FIRE suite. We run the skirt radiative transfer code on hundreds of snapshots in the redshift range 1.5 < z < 5 and calibrate a power-law scaling relation between dust mass, star formation rate, and $870\, \mu \rm {m}$ flux density. The derived scaling relation shows encouraging consistency with observational results from the sub-millimetre-selected AS2UDS sample. We extend this to other wavelengths, deriving scaling relations between dust mass, stellar mass, star formation rate, and redshift and sub-millimetre flux density at observed-frame wavelengths between $\sim \! 340$ and $\sim \! 870\, \mu \rm {m}$. We then apply the scaling relations to galaxies drawn from EAGLE, a large box cosmological simulation. We show that the scaling relations predict EAGLE sub-millimetre number counts that agree well with previous results that were derived using far more computationally expensive radiative transfer techniques. Our scaling relations can be applied to other simulations and semi-analytical or semi-empirical models to generate robust and fast predictions for sub-millimetre number counts.

     
    more » « less
  4. null (Ed.)
    Context. The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: star birth and death, grain formation and destruction, and galactic inflows and outflows. Understanding such processes and their relative importance is essential to following galaxy evolution and the chemical enrichment through the cosmic epochs, and to interpreting current and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, for example massive stars exploding as Type II supernovae (SNe) and low-mass stars, as well as the mechanisms driving the evolution of dust grains, such as for example grain growth in the ISM and destruction by SN shocks, remain controversial from both observational and theoretical viewpoints. Aims. In this work, we revise the current description of metal and dust evolution in the ISM of local low-metallicity dwarf galaxies and develop a new description of Lyman-break galaxies (LBGs) which are considered to be their high-redshift counterparts in terms of star formation, stellar mass, and metallicity. Our goal is to reproduce the observed properties of such galaxies, in particular (i) the peak in dust mass over total stellar mass (sMdust) observed within a few hundred million years; and (ii) the decrease in sMdust at a later time. Methods. We fitted spectral energy distribution of dwarf galaxies and LBGs with the “Code Investigating GALaxies Emission”, through which the total stellar mass, dust mass, and star formation rate are estimated. For some of the dwarf galaxies considered, the metal and gas content are available from the literature. We computed different prescriptions for metal and dust evolution in these systems (e.g. different initial mass functions for stars, dust condensation fractions, SN destruction, dust accretion in the ISM, and inflow and outflow efficiency), and we fitted the properties of the observed galaxies through the predictions of the models. Results. Only some combinations of models are able to reproduce the observed trend and simultaneously fit the observed properties of the galaxies considered. In particular, we show that (i) a top-heavy initial mass function that favours the formation of massive stars and a dust condensation fraction for Type II SNe of around 50% or more help to reproduce the peak of sMdust observed after ≈100 Myr from the beginning of the baryon cycle for both dwarf galaxies and LBGs; (ii) galactic outflows play a crucial role in reproducing the observed decline in sMdust with age and are more efficient than grain destruction from Type II SNe both in local galaxies and at high-redshift; (iii) a star formation efficiency (mass of gas converted into stars) of a few percent is required to explain the observed metallicity of local dwarf galaxies; and (iv) dust growth in the ISM is not necessary in order to reproduce the values of sMdust derived for the galaxies under study, and, if present, the effect of this process would be erased by galactic outflows. 
    more » « less
  5. The detection of the fullerenes C60 and C70 in the interstellar medium (ISM) has transformed our understanding of chemical complexity in space. These discoveries also raise the possibility for the presence of even larger molecules in astrophysical environments. Here we report in situ heating of analog silicon carbide (SiC) presolar grains using transmission electron microscopy (TEM). These heating experiments are designed to simulate the temperature conditions occurring in post-AGB stellar envelopes. Our experimental findings reveal that heating the analog SiC grains to the point of decomposition initially yields hemispherical C60-sized nanostructures, with five- and six-membered rings, which transform into multiwalled carbon nanotubes (MWCNTs) if held isothermally >2 min. These MWCNTs are certainly larger than any of the currently observed interstellar fullerene species, both in overall size and number of C atoms. These experimental simulations suggest that such MWCNTs are likely to form in post-AGB circumstellar material, where the structures, along with the smaller fullerenes, are subsequently injected into the ISM. 
    more » « less