skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Spectroscopic evidence for a large spot on the dimming Betelgeuse
Abstract During October 2019 and March 2020, the luminous red supergiant Betelgeuse demonstrated an unusually deep minimum of its brightness. It became fainter by more than one magnitude and this is the most significant dimming observed in the recent decades. While the reason for the dimming is debated, pre-phase of supernova explosion, obscuring dust, or changes in the photosphere of the star were suggested scenarios. Here, we present spectroscopic studies of Betelgeuse using high-resolution and high signal-to-noise ratio near-infrared spectra obtained at Weihai Observatory on four epochs in 2020 covering the phases of during and after dimming. We show that the dimming episode is caused by the dropping of its effective temperature by at least 170 K on 2020 January 31, that can be attributed to the emergence of a large dark spot on the surface of the star.  more » « less
Award ID(s):
1816411
PAR ID:
10357938
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We assess whether gravity darkening, induced by a tidal interaction during a stellar fly-by, might be sufficient to explain the Great Dimming of Betelgeuse. Adopting several simple approximations, we calculate the tidal deformation and associated gravity darkening in a close tidal encounter, as well as the reduction in the radiation flux as seen by a distant observer. We show that, in principle, the duration and degree of the resulting stellar dimming can be used to estimate the minimum pericentre separation and mass of a fly-by object, which, even if it remains undetected otherwise, might be a black hole, neutron star, or white dwarf. Our estimates show that, while such fly-by events may occur in other astrophysical scenarios, where our analysis should be applicable, they likely are not large enough to explain the Great Dimming of Betelgeuse by themselves.

     
    more » « less
  2. Abstract

    The cool hypergiant star RW Cephei is currently in a deep photometric minimum that began several years ago. This event bears a strong similarity to the Great Dimming of the red supergiant Betelgeuse that occurred in 2019–2020. We present the first resolved images of RW Cephei that we obtained with the CHARA Array interferometer. The angular diameter and Gaia distance estimates indicate a stellar radius of 900–1760R, which makes RW Cephei one of the largest stars known in the Milky Way. The reconstructed, near-infrared images show a striking asymmetry in the disk illumination with a bright patch offset from the center and a darker zone to the west. The imaging results depend on assumptions made about the extended flux, and we present two cases with and without allowing extended emission. We also present a recent near-infrared spectrum of RW Cep that demonstrates that the fading is much larger at visual wavelengths compared to that at near-infrared wavelengths as expected for extinction by dust. We suggest that the star’s dimming is the result of a recent surface mass ejection event that created a dust cloud that now partially blocks the stellar photosphere.

     
    more » « less
  3. Abstract

    We present the discovery of an exceptional dimming event in a cool supergiant star in the Local Volume spiral M51. The star, dubbed M51-DS1, was found as part of a Hubble Space Telescope (HST) search for failed supernovae (SNe). The supergiant, which is plausibly associated with a very young (≲6 Myr) stellar population, showed clear variability (amplitude ΔF814W≈ 0.7 mag) in numerous HST images obtained between 1995 and 2016, before suddenly dimming by >2 mag inF814Wsometime between late 2017 and mid-2019. In follow-up data from 2021, the star rebrightened, ruling out a failed supernova. Prior to its near-disappearance, the star was luminous and red (MF814W≲ − 7.6 mag,F606WF814W= 1.9–2.2 mag). Modeling of the pre-dimming spectral energy distribution of the star favors a highly reddened, very luminous (log[L/L]=5.4–5.7) star withTeff≈ 3700–4700 K, indicative of a cool yellow or post-red supergiant (RSG) with an initial mass of ≈26–40M. However, the local interstellar extinction and circumstellar extinction are uncertain, and could be lower: the near-IR colors are consistent with an RSG, which would be cooler (Teff≲ 3700 K) and slightly less luminous (log[L/L]=5.2–5.3), giving an inferred initial mass of ≈19–22M. In either case, the dimming may be explained by a rare episode of enhanced mass loss that temporarily obscures the star, potentially a more extreme counterpart to the 2019–2020 “Great Dimming” of Betelgeuse. Given the emerging evidence that massive evolved stars commonly exhibit variability that can mimic a disappearing star, our work highlights a substantial challenge in identifying true failed SNe.

     
    more » « less
  4. Abstract

    Stars with initial masses larger than 8Mundergo substantial mass loss through mechanisms that remain elusive. Unraveling the origins of this mass loss is important for comprehending the evolutionary path of these stars, the type of supernova explosion, and whether they become neutron stars or black hole remnants. In 2022 December, RW Cep experienced the Great Dimming in its visible brightness, presenting a unique opportunity to understand mass-loss mechanisms. Our previous observations of RW Cep from the CHARA Array, taken during the dimming phase, show a compelling asymmetry in the star images, with a darker zone on the west side of the star indicating the presence of dust in front of the star in our line of sight. Here, we present multiepoch observations from CHARA while the star rebrightened in 2023. We created images using three image reconstruction methods and an analytical model fit. Comparisons of images acquired during the dimming and rebrightening phases reveal remarkable differences. Specifically, the west side of RW Cep, initially obscured during the dimming phase, reappeared during the subsequent rebrightening phase, and the measured angular diameter became larger by 8%. We also observed image changes from epoch to epoch while the star is brightening, indicating the time evolution of dust in front of the star. We suggest that the dimming of RW Cep was a result of a recent surface mass ejection event, generating a dust cloud that partially obstructed the stellar photosphere.

     
    more » « less
  5. Abstract

    Stars that interact with supermassive black holes (SMBHs) can be either completely or partially destroyed by tides. In a partial tidal disruption event (TDE), the high-density core of the star remains intact, and the low-density outer envelope of the star is stripped and feeds a luminous accretion episode. The TDE AT 2018fyk, with an inferred black hole mass of 107.7±0.4M, experienced an extreme dimming event at X-ray (factor of >6000) and UV (factor of ∼15) wavelengths ∼500–600 days after discovery. Here we report on the reemergence of these emission components roughly 1200 days after discovery. We find that the source properties are similar to those of the predimming accretion state, suggesting that the accretion flow was rejuvenated to a similar state. We propose that a repeated partial TDE, where the partially disrupted star is on an ∼1200 day orbit about the SMBH and periodically stripped of mass during each pericenter passage, powers its unique light curve. This scenario provides a plausible explanation for AT 2018fyk’s overall properties, including the rapid dimming event and the rebrightening at late times. We also provide testable predictions for the behavior of the accretion flow in the future; if the second encounter was also a partial disruption, then we predict another strong dimming event around day 1800 (2023 August) and a subsequent rebrightening around day 2400 (2025 March). This source provides strong evidence of the partial disruption of a star by an SMBH.

     
    more » « less