We present multi-instrument observations of the disc around the Herbig Ae star, HD 145718, employing geometric and Monte Carlo radiative transfer models to explore the disc orientation, the vertical and radial extent of the near-infrared (NIR) scattering surface, and the properties of the dust in the disc surface and sublimation rim. The disc appears inclined at 67–71°, with position angle, PA = −1.0 to 0.6°, consistent with previous estimates. The NIR scattering surface extends out to ${\sim}75\,$ au and we infer an aspect ratio, hscat(r)/r ∼ 0.24 in J band; ∼0.22 in H band. Our Gemini Planet Imager images and VLTI + CHARA NIR interferometry suggest that the disc surface layers are populated by grains ≳λ/2π in size, indicating these grains are aerodynamically supported against settling and/or the density of smaller grains is relatively low. We demonstrate that our geometric analysis provides a reasonable assessment of the height of the NIR scattering surface at the outer edge of the disc and, if the inclination can be independently constrained, has the potential to probe the flaring exponent of the scattering surface in similarly inclined (i ≳ 70°) discs. In re-evaluating HD 145718’s stellar properties, we found that the object’s dimming events – previously characterized as UX Or and dipper variability – are consistent with dust occultation by grains larger, on average, than found in the ISM. This occulting dust likely originates close to the inferred dust sublimation radius at $0.17\,$ au.
The cool hypergiant star RW Cephei is currently in a deep photometric minimum that began several years ago. This event bears a strong similarity to the Great Dimming of the red supergiant Betelgeuse that occurred in 2019–2020. We present the first resolved images of RW Cephei that we obtained with the CHARA Array interferometer. The angular diameter and Gaia distance estimates indicate a stellar radius of 900–1760
- NSF-PAR ID:
- 10436953
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 166
- Issue:
- 2
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- Article No. 78
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We present new [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$ observations of five bright z ∼ 7 Lyman-break galaxies spectroscopically confirmed by ALMA through [${\rm C\, {\small II}}$] 158 $\mu \mathrm{{m}}$, unlike recent [${\rm O\, {\small III}}$] detections where Lyman α was used. This nearly doubles the sample of Epoch of Reionization galaxies with robust (5σ) [${\rm C\, {\small II}}$] and [${\rm O\, {\small III}}$] detections. We perform a multiwavelength comparison with new deep HST images of the rest-frame UV, whose compact morphology aligns well with [${\rm O\, {\small III}}$] tracing ionized gas. In contrast, we find more spatially extended [${\rm C\, {\small II}}$] emission likely produced in neutral gas, as indicated by an [${\rm N\, {\small II}}$] 205-$\mu \mathrm{{m}}$ non-detection in one source. We find a correlation between the optical ${[{\rm O\, {\small III}}]}+ {\mathrm{H\,\beta }}$ equivalent width and [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$], as seen in local metal-poor dwarf galaxies. cloudy models of a nebula of typical density harbouring a young stellar population with a high-ionization parameter adequately reproduce the observed lines. Surprisingly, however, our models fail to reproduce the strength of [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$, unless we assume an α/Fe enhancement and near-solar nebular oxygen abundance. On spatially resolved scales, we find [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$] shows a tentative anticorrelation with infrared excess, LIR/LUV, also seen on global scales in the local Universe. Finally, we introduce the far-infrared spectral energy distribution fitting code mercurius to show that dust-continuum measurements of one source appear to favour a low dust temperature and correspondingly high dust mass. This implies a high stellar metallicity yield and may point towards the need of dust production or grain-growth mechanisms beyond supernovae.
-
Abstract Single flux density measurements at observed-frame submillimeter and millimeter wavelengths are commonly used to probe dust and gas masses in galaxies. In this Letter, we explore the robustness of this method to infer dust mass, focusing on quiescent galaxies, using a series of controlled experiments on four massive halos from the Feedback in Realistic Environments project. Our starting point is four star-forming central galaxies at seven redshifts between
z = 1.5 andz = 4.5. We generate modified quiescent galaxies that have been quenched for 100 Myr, 500 Myr, or 1 Gyr prior to each of the studied redshifts by reassigning stellar ages. We derive spectral energy distributions for each fiducial and modified galaxy using radiative transfer. We demonstrate that the dust mass inferred is highly dependent on the assumed dust temperature,T dust, which is often unconstrained observationally. Motivated by recent work on quiescent galaxies that assumedT dust∼ 25 K, we show that the ratio between dust mass and 1.3 mm flux density can be higher than inferred by up to an order of magnitude, due to the considerably lower dust temperatures seen in non-star-forming galaxies. This can lead to an underestimation of dust mass (and, when submillimeter flux density is used as a proxy for molecular gas content and gas mass). This underestimation is most severe at higher redshifts, where the observed-frame 1.3 mm flux density probes rest-frame wavelengths far from the Rayleigh–Jeans regime, and hence depends superlinearly on dust temperature. We fit relations between ratios of rest-frame far-infrared flux densities and mass-weighted dust temperature that can be used to constrain dust temperatures from observations and hence derive more reliable dust and molecular gas masses. -
ALMA Reveals Extended Cool Gas and Hot Ionized Outflows in a Typical Star-forming Galaxy at Z = 7.13
Abstract We present spatially resolved morphological properties of [C
II ] 158μ m, [OIII ] 88μ m, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz = 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII ] line and UV continuum are compact, the [CII ] line is extended up to a radius ofr ∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μ m, we find an average dust temperature and emissivity index of K and , respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1M ⊙yr−1with an obscured fraction of 87%. While the [OIII ] line is a good tracer of the SFR, the [CII ] line shows deviation from the localL [CII ]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII ] and [OIII ], with significant residuals (∼5σ ) in the [OIII ] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII ] structure from the cooling of hot ionized outflows. The extended [CII ] and high-velocity [OIII ] emission may both contribute in part to the highL [OIII ]/L [CII ]ratios recently reported inz > 6 galaxies. -
ABSTRACT We present the first detailed study of the spatially resolved dust continuum emission of simulated galaxies at 1 < z < 5. We run the radiative transfer code skirt on a sample of submillimetre-bright galaxies drawn from the Feedback In Realistic Environments (FIRE) project. These simulated galaxies reach Milky Way masses by z = 2. Our modelling provides predictions for the full rest-frame far-ultraviolet-to-far-infrared spectral energy distributions of these simulated galaxies, as well as 25-pc resolution maps of their emission across the wavelength spectrum. The derived morphologies are notably different in different wavebands, with the same galaxy often appearing clumpy and extended in the far-ultraviolet yet an ordered spiral at far-infrared wavelengths. The observed-frame 870-$\mu$m half-light radii of our FIRE-2 galaxies are ${\sim} 0.5\rm {-}4\, \rm {kpc}$, consistent with existing ALMA observations of galaxies with similarly high redshifts and stellar masses. In both simulated and observed galaxies, the dust continuum emission is generally more compact than the cold gas and the dust mass, but more extended than the stellar component. The most extreme cases of compact dust emission seem to be driven by particularly compact recent star formation, which generates steep dust temperature gradients. Our results confirm that the spatial extent of the dust continuum emission is sensitive to both the dust mass and star formation rate distributions.more » « less