skip to main content

Title: Did a close tidal encounter cause the Great Dimming of Betelgeuse?
ABSTRACT

We assess whether gravity darkening, induced by a tidal interaction during a stellar fly-by, might be sufficient to explain the Great Dimming of Betelgeuse. Adopting several simple approximations, we calculate the tidal deformation and associated gravity darkening in a close tidal encounter, as well as the reduction in the radiation flux as seen by a distant observer. We show that, in principle, the duration and degree of the resulting stellar dimming can be used to estimate the minimum pericentre separation and mass of a fly-by object, which, even if it remains undetected otherwise, might be a black hole, neutron star, or white dwarf. Our estimates show that, while such fly-by events may occur in other astrophysical scenarios, where our analysis should be applicable, they likely are not large enough to explain the Great Dimming of Betelgeuse by themselves.

Authors:
; ;
Publication Date:
NSF-PAR ID:
10372535
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
4
Page Range or eLocation-ID:
p. 5021-5026
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Tidal evolution of eccentric binary systems containing at least one massive main-sequence (MS) star plays an important role in the formation scenarios of merging compact-object binaries. The dominant dissipation mechanism in such systems involves tidal excitation of outgoing internal gravity waves at the convective-radiative boundary and dissipation of the waves at the stellar envelope/surface. We have derived analytical expressions for the tidal torque and tidal energy transfer rate in such binaries for arbitrary orbital eccentricities and stellar rotation rates. These expressions can be used to study the spin and orbital evolution of eccentric binaries containing massive MS stars, such as the progenitors of merging neutron star binaries. Applying our results to the PSR J0045-7319 system, which has a massive B-star companion and an observed, rapidly decaying orbit, we find that for the standard radius of convective core based on non-rotating stellar models, the B-star must have a significant retrograde and differential rotation in order to explain the observed orbital decay rate. Alternatively, we suggest that the convective core may be larger as a result of rapid stellar rotation and/or mass transfer to the B-star in the recent past during the post-MS evolution of the pulsar progenitor.

  2. ABSTRACT

    We revisit the tidally excited oscillations (TEOs) in the A-type main-sequence eccentric binary KOI-54, the prototype of heartbeat stars. Although the linear tidal response of the star is a series of orbital-harmonic frequencies which are not stellar eigenfrequencies, we show that the non-linearly excited non-orbital-harmonic TEOs are eigenmodes. By carefully choosing the modes which satisfy the mode-coupling selection rules, a period spacing (ΔP) pattern of quadrupole gravity modes (ΔP ≈ 2520–2535 s) can be discerned in the Fourier spectrum, with a detection significance level of $99.9{{\ \rm per\ cent}}$. The inferred period spacing value agrees remarkably well with the theoretical l = 2, m = 0 g modes from a stellar model with the measured mass, radius, and effective temperature. We also find that the two largest-amplitude TEOs at N = 90, 91 harmonics are very close to resonance with l = 2, m = 0 eigenmodes, and likely come from different stars. Previous works on tidal oscillations primarily focus on the modelling of TEO amplitudes and phases, the high sensitivity of TEO amplitude to the frequency detuning (tidal forcing frequency minus the closest stellar eigenfrequency) requires extremely dense grids of stellar models and prevents us from constraining the stellar physical parameters easily. This work, however, opensmore »the window of real tidal asteroseismology by using the eigenfrequencies of the star inferred from the non-linear TEOs and possibly very-close-to-resonance linear TEOs. Our seismic modelling of these identified eigen g-modes shows that the best-matching stellar models have (M ≈ 2.20, 2.35 M⊙) and super-solar metallicity, in good agreement with previous measurements.

    « less
  3. Context. Rapid rotation is a common feature for massive stars, with important consequences on their physical structure, flux distribution and evolution. Fast-rotating stars are flattened and show gravity darkening (non-uniform surface intensity distribution). Another important and less studied impact of fast-rotation in early-type stars is its influence on the surface brightness colour relation (hereafter SBCR), which could be used to derive the distance of eclipsing binaries. Aims. The purpose of this paper is to determine the flattening of the fast-rotating B-type star δ Per using visible long-baseline interferometry. A second goal is to evaluate the impact of rotation and gravity darkening on the V − K colour and surface brightness of the star. Methods. The B-type star δ Per was observed with the VEGA/CHARA interferometer, which can measure spatial resolutions down to 0.3 mas and spectral resolving power of 5000 in the visible. We first used a toy model to derive the position angle of the rotation axis of the star in the plane of the sky. Then we used a code of stellar rotation, CHARRON, in order to derive the physical parameters of the star. Finally, by considering two cases, a static reference star and our best model ofmore »δ Per, we can quantify the impact of fast rotation on the surface brightness colour relation (SBCR). Results. We find a position angle of 23 ± 6 degrees. The polar axis angular diameter of δ Per is θ p = 0.544 ± 0.007 mas, and the derived flatness is r = 1.121 ± 0.013. We derive an inclination angle for the star of i = 85 + 5 -20 degrees and a projected rotation velocity V sin i = 175 + 8 -11 km s -1 (or 57% of the critical velocity). We find also that the rotation and inclination angle of δ Per keeps the V − K colour unchanged while it decreasing its surface-brightness by about 0.05 mag. Conclusions. Correcting the impact of rotation on the SBCR of early-type stars appears feasible using visible interferometry and dedicated models.« less
  4. ABSTRACT

    When a star passes close to a supermassive black hole (BH), the BH’s tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamics (GRHD) using our GPU-accelerated code h-amr. We carry out the first grid-based simulation of a deep-penetration TDE (β = 7) with realistic system parameters: a black hole-to-star mass ratio of 106, a parabolic stellar trajectory, and a non-zero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disc forms due to the dissipation of orbital energy with ∼20 per cent of the infalling material reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream–disc interactions near the pericentre. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events separated by approximately 12 h and a flaring in the accretion rate. We also find that the disc is eccentric with mean eccentricity e ≈ 0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericentre. Althoughmore »these partial intersections eject gas out of the orbital plane, an accretion disc still forms with a similar accreted fraction of the material to the aligned case. These results have important implications for disc formation in realistic tidal disruptions. For instance, the periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J1644+57.

    « less
  5. Abstract Tidal disruption events with tidal radius r t and pericenter distance r p are characterized by the quantity β = r t / r p , and “deep encounters” have β ≫ 1. It has been assumed that there is a critical β ≡ β c ∼ 1 that differentiates between partial and full disruption: for β < β c a fraction of the star survives the tidal interaction with the black hole, while for β > β c the star is completely destroyed, and hence all deep encounters should be full. Here we show that this assumption is incorrect by providing an example of a β = 16 encounter between a γ = 5/3, solar-like polytrope and a 10 6 M ⊙ black hole—for which previous investigations have found β c ≃ 0.9—that results in the reformation of a stellar core post-disruption that comprises approximately 25% of the original stellar mass. We propose that the core reforms under self-gravity, which remains important because of the compression of the gas both near pericenter, where the compression occurs out of the orbital plane, and substantially after pericenter, where compression is within the plane. We find that the core forms onmore »a bound orbit about the black hole, and we discuss the corresponding implications of our findings in the context of recently observed, repeating nuclear transients.« less