We present a proof under a generalization of the Riemann Hypothesis that the class group algorithm of Hafner and McCurley runs in expected time \begin{document}$$ e^{\left(3/\sqrt{8}+o(1)\right)\sqrt{\log d\log\log d}} $$\end{document} where \begin{document}$ -d $$\end{document} is the discriminant of the input imaginary quadratic order. In the original paper, an expected run time of \begin{document}$$ e^{\left(\sqrt{2}+o(1)\right)\sqrt{\log d\log\log d}} $$\end{document}$ was proven, and better bounds were conjectured. To achieve a proven result, we rely on a mild modification of the original algorithm, and on recent results on the properties of the Cayley graph of the ideal class group.
more »
« less
Hodge and Teichmüller
We consider the derivative \begin{document}$$ D\pi $$\end{document} of the projection \begin{document}$$ \pi $$\end{document} from a stratum of Abelian or quadratic differentials to Teichmüller space. A closed one-form \begin{document}$$ \eta $$\end{document} determines a relative cohomology class \begin{document}$$ [\eta]_\Sigma $$\end{document}, which is a tangent vector to the stratum. We give an integral formula for the pairing of \begin{document}$$ D\pi([\eta]_\Sigma) $$\end{document} with a cotangent vector to Teichmüller space (a quadratic differential). We derive from this a comparison between Hodge and Teichmüller norms, which has been used in the work of Arana-Herrera on effective dynamics of mapping class groups, and which may clarify the relationship between dynamical and geometric hyperbolicity results in Teichmüller theory.
more »
« less
- Award ID(s):
- 1856155
- PAR ID:
- 10357980
- Date Published:
- Journal Name:
- Journal of Modern Dynamics
- Volume:
- 18
- Issue:
- 0
- ISSN:
- 1930-5311
- Page Range / eLocation ID:
- 149
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We address the global existence and uniqueness of solutions for the anisotropically reduced 2D Kuramoto-Sivashinsky equations in a periodic domain with initial data \begin{document}$$ u_{01} \in L^2 $$\end{document} and \begin{document}$$ u_{02} \in H^{-1 + \eta} $$\end{document} for \begin{document}$$ \eta > 0 $$\end{document}.more » « less
-
Realizing arbitrary $$d$$-dimensional dynamics by renormalization of $C^d$-perturbations of identityAny \begin{document}$ C^d $$\end{document} conservative map \begin{document}$$ f $$\end{document} of the \begin{document}$$ d $$\end{document}-dimensional unit ball \begin{document}$$ {\mathbb B}^d $$\end{document}, \begin{document}$$ d\geq 2 $$\end{document}, can be realized by renormalized iteration of a \begin{document}$$ C^d $$\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$$ {\mathbb B}^d $$\end{document}, arbitrarily close to identity in the \begin{document}$$ C^d $$\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$$ C^d $$\end{document} change of coordinates is exactly \begin{document}$$ f $$\end{document}$.more » « less
-
Consider the linear transport equation in 1D under an external confining potential \begin{document}$$ \Phi $$\end{document}: \begin{document}$$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $$\end{document} For \begin{document}$$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $$\end{document} (with \begin{document}$$ \varepsilon >0 $$\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $$\end{document}, with an inverse polynomial decay rate \begin{document}$$ O({\langle} t{\rangle}^{-2}) $$\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $$\end{document}D under the external potential \begin{document}$$ \Phi $$\end{document}$.more » « less
-
In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian \begin{document}$$ (- \Delta)^\frac{{ \alpha}}{{2}} $$\end{document} for \begin{document}$$ \alpha \in (0, 2) $$\end{document}. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^2) $$\end{document}, while \begin{document}$$ {\mathcal O}(h^4) $$\end{document} for quadratic basis functions with \begin{document}$ h $$\end{document} a small mesh size. This accuracy can be achieved for any \begin{document}$$ \alpha \in (0, 2) $$\end{document} and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies \begin{document}$$ u \in C^{m, l}(\bar{ \Omega}) $$\end{document} for \begin{document}$$ m \in {\mathbb N} $$\end{document} and \begin{document}$$ 0 < l < 1 $$\end{document}, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 2\}}) $$\end{document} for constant and linear basis functions, while \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $$\end{document}$ for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.more » « less
An official website of the United States government

