skip to main content


Title: Solid state welding of medium-entropy CrCoNi with heterogeneous, partially recrystallized microstructures
Heterogeneous, partially recrystallized (PRX) microstructures have recently been used to improve strength-ductility combinations in high-entropy alloys. However, these microstructures are incompatible with conventional joining processes that require melting or prolonged exposure to elevated temperatures. This work presents an initial exploration of solid state joining in this challenging condition using vaporizing foil actuator welding (VFAW) applied to PRX equiatomic alloy CrCoNi.  more » « less
Award ID(s):
1905748
PAR ID:
10358046
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Materials science engineering
Volume:
818
ISSN:
0921-5093
Page Range / eLocation ID:
141425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Continuous efforts are underway for the reduction of the structural weight of transit through the introduction of a multi-material metal-composites system. There are major challenges in joining dissimilar materials to result in optimum structural integrity. The conventional joining techniques have limitations in terms of preparation time, weight penalty resulting from adhesives, and uncertainty in joint integrity. Recently adoption of macro scale mechanical interlocking in the adhesive joining resulted in significant improvement of joint performance. This made mechanical interlocking gain an attention for hybrid joining. In this study, fastenerless method of mechanical interlocking based on Japanese wood joining craft is considered for joining carbon fiber-reinforced polyamide thermoplastic composite to aluminum. Different interlocking joining designs (IJDs) were developed. The joints were obtained by force-fitting the male into the female counterpart. Here the male and female segments joined at macro level with no joining integrity at the interface. Further, these joints were tested and evaluated for tensile strength. A finite element analysis (FEA) model is developed for stress analysis and studying failure mechanisms of the IJDs. It was observed that the geometry of IJD dictates the failure mode and material composition governs the maximum strength achieved by a particular IJD. Each IJD showed higher load capacity with metal as a female counterpart to the composite compared to other way round.

     
    more » « less
  2. Material scientists have made progress in controlling alloy performance through microstructure quantification. However, attempts at numerically modeling microstructures have failed due to the complex nature of the solidification process. In this research, we present the AlloyGAN deep learning model to generate microstructures for castable aluminum alloys. This innovative model demonstrates its capacity to simulate the evolution of aluminum alloy microstructures in response to variations in composition and cooling rates. Specifically, it is successful to simulate various effects on castable aluminum, including: (1) the influence of Si and other elements on microstructures, (2) the relationship between cooling rate and Secondary Dendritic Arm Spacing, and (3) the impact of P/Sr elements on microstructures. Our model delivers results that match the accuracy and robustness of traditional computational materials science methods, yet significantly reduces computation time. 
    more » « less
  3. Abstract

    We study optimal transport for stationary stochastic processes taking values in finite spaces. In order to reflect the stationarity of the underlying processes, we restrict attention to stationary couplings, also known as joinings. The resulting optimal joining problem captures differences in the long-run average behavior of the processes of interest. We introduce estimators of both optimal joinings and the optimal joining cost, and establish consistency of the estimators under mild conditions. Furthermore, under stronger mixing assumptions we establish finite-sample error rates for the estimated optimal joining cost that extend the best known results in the iid case. We also extend the consistency and rate analysis to an entropy-penalized version of the optimal joining problem. Finally, we validate our convergence results empirically as well as demonstrate the computational advantage of the entropic problem in a simulation experiment.

     
    more » « less
  4. Abstract

    Flat, organic microstructures that can self‐fold into 3D microstructures are promising for tissue regeneration, for being capable of distributing living cells in 3D while forming highly complex, biomimetic architectures to assist cells in performing regeneration. However, the design of self‐folding microstructures is difficult due to a lack of understanding of the underlying formation mechanisms. This study helps bridge this gap by deciphering the dynamics of the self‐folding using a mass‐spring model. This numerical study reveals that self‐folding procedure is multi‐modal, which can become random and unpredictable by involving the interplays between internal stresses, external stimulation, imperfection, and self‐hindrance of the folding body. To verify the numerical results, bilayered, hydrogel‐based micropatterns capable of self‐folding are fabricated using inkjet‐printing and tested. The experimental and numerical results are consistent with each other. The above knowledge is applied to designing and fabricating self‐folding microstructures for tissue‐engineering, which successfully creates 3D, cell‐scaled, and biomimetic microstructures, such as microtubes, branched microtubes, and hollow spheres. Embedded in self‐folded microtubes, human mesenchymal stem cells proliferate and form linear cell‐organization mimicking the cell morphology in muscles and tendons. The above knowledge and study platforms can greatly contribute to the research on self‐folding microstructures and applications to tissue regeneration.

     
    more » « less
  5. null (Ed.)
    Boron-rich B-C compounds with high hardness have been recently synthesized by the chemical vapor deposition (CVD) method. In this paper, we present our successful efforts in the selective growth of microstructures of boron-carbon compounds on silicon substrates. This was achieved by combining microfabrication techniques such as maskless lithography and sputter deposition with the CVD technique. Our characterization studies on these B-C microstructures showed that they maintain structural and mechanical properties similar to that of their thin-film counterparts. The methodology presented here paves the way for the development of microstructures for microelectromechanical system (MEMS) applications which require custom hardness and strength properties. These hard B-C microstructures are an excellent choice as support structures in MEMS-based devices. 
    more » « less