skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solid state welding of medium-entropy CrCoNi with heterogeneous, partially recrystallized microstructures
Heterogeneous, partially recrystallized (PRX) microstructures have recently been used to improve strength-ductility combinations in high-entropy alloys. However, these microstructures are incompatible with conventional joining processes that require melting or prolonged exposure to elevated temperatures. This work presents an initial exploration of solid state joining in this challenging condition using vaporizing foil actuator welding (VFAW) applied to PRX equiatomic alloy CrCoNi.  more » « less
Award ID(s):
1905748
PAR ID:
10358046
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Materials science engineering
Volume:
818
ISSN:
0921-5093
Page Range / eLocation ID:
141425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Continuous efforts are underway for the reduction of the structural weight of transit through the introduction of a multi-material metal-composites system. There are major challenges in joining dissimilar materials to result in optimum structural integrity. The conventional joining techniques have limitations in terms of preparation time, weight penalty resulting from adhesives, and uncertainty in joint integrity. Recently adoption of macro scale mechanical interlocking in the adhesive joining resulted in significant improvement of joint performance. This made mechanical interlocking gain an attention for hybrid joining. In this study, fastenerless method of mechanical interlocking based on Japanese wood joining craft is considered for joining carbon fiber-reinforced polyamide thermoplastic composite to aluminum. Different interlocking joining designs (IJDs) were developed. The joints were obtained by force-fitting the male into the female counterpart. Here the male and female segments joined at macro level with no joining integrity at the interface. Further, these joints were tested and evaluated for tensile strength. A finite element analysis (FEA) model is developed for stress analysis and studying failure mechanisms of the IJDs. It was observed that the geometry of IJD dictates the failure mode and material composition governs the maximum strength achieved by a particular IJD. Each IJD showed higher load capacity with metal as a female counterpart to the composite compared to other way round. 
    more » « less
  2. Abstract We study optimal transport for stationary stochastic processes taking values in finite spaces. In order to reflect the stationarity of the underlying processes, we restrict attention to stationary couplings, also known as joinings. The resulting optimal joining problem captures differences in the long-run average behavior of the processes of interest. We introduce estimators of both optimal joinings and the optimal joining cost, and establish consistency of the estimators under mild conditions. Furthermore, under stronger mixing assumptions we establish finite-sample error rates for the estimated optimal joining cost that extend the best known results in the iid case. We also extend the consistency and rate analysis to an entropy-penalized version of the optimal joining problem. Finally, we validate our convergence results empirically as well as demonstrate the computational advantage of the entropic problem in a simulation experiment. 
    more » « less
  3. The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. Gotshall, O'Brien and Tait conjectured that for sufficiently large $$n$$, the $$n$$-vertex outerplanar graph with maximum spread is the graph obtained by joining a vertex to a path on $n-1$ vertices. In this paper, we disprove this conjecture by showing that the extremal graph is the graph obtained by joining a vertex to a path on $$\lceil(2n-1)/3\rceil$$ vertices and $$\lfloor(n-2)/3\rfloor$$ isolated vertices. For planar graphs, we show that the extremal $$n$$-vertex planar graph attaining the maximum spread is the graph obtained by joining two nonadjacent vertices to a path on $$\lceil(2n-2)/3\rceil$$ vertices and $$\lfloor(n-4)/3\rfloor$$ isolated vertices. 
    more » « less
  4. Abstract Inspired by natural designs, microstructures exhibit remarkable properties, which drive interest in creating metamaterials with extraordinary traits. However, imperfections within microstructures and poor connectivity at the microscale level can significantly impact their performance and reliability. Achieving proper connectivity between microstructural elements and detecting structural imperfections within the microstructures pose challenges in multiscale design optimization. While using a connectivity index (CI) to quantify the topological connectivity between microstructures has been explored previously, prior approaches have limitations in identifying microstructures with complex curved geometries between adjacent units. To alleviate this issue, we present a novel CI in this study. The proposed CI goes beyond conventional methods by focusing on surface interfaces and internal microstructural irregularities. Through numerical investigations, we successfully connected distinct types of microstructures well by integrating the introduced CI with the functional gradation scheme. We also demonstrate that the presented CI can serve as a metric to identify sharp changes or imperfections within microstructures. We evaluate the performance of the introduced index against other connectivity indices using diverse microstructural examples. Experimental findings provide valuable insights into the fundamental aspects of imperfection detection and rectification in microstructures within the multiscale design, paving the way for developing more robust and reliable materials in engineering applications. 
    more » « less
  5. Abstract Inspired by natural designs, microstructures exhibit remarkable properties, which drive interest in creating metamaterials with extraordinary traits. However, imperfections within microstructures and poor connectivity at the microscale level can significantly impact their performance and reliability. Achieving proper connectivity between microstructural elements and detecting structural imperfections within the microstructures pose challenges in multiscale design optimization. While using a connectivity index (CI) to quantify the topological connectivity between microstructures has been explored previously, prior approaches have limitations in identifying microstructures with complex curved geometries between adjacent units. To alleviate this issue, we present a novel CI in this study. The proposed CI goes beyond conventional methods by focusing on surface interfaces and internal microstructural irregularities. Through numerical investigations, we successfully connected distinct types of microstructures well by integrating the introduced CI with the functional-gradation scheme. We also demonstrate that the presented CI can serve as a metric to identify sharp changes or imperfections within microstructures. We evaluate the performance of the introduced index against other connectivity indices using diverse microstructural examples. Experimental findings provide valuable insights into the fundamental aspects of imperfection detection and rectification in microstructures within the multiscale design, paving the way for developing more robust and reliable materials in engineering applications. 
    more » « less