Graph rationales are representative subgraph structures that best explain and support the graph neural network (GNN) predictions. Graph rationalization involves the joint identification of these subgraphs during GNN training, resulting in improved interpretability and generalization. GNN is widely used for node-level tasks such as paper classification and graph-level tasks such as molecular property prediction. However, on both levels, little attention has been given to GNN rationalization and the lack of training examples makes it difficult to identify the optimal graph rationales. In this work, we address the problem by proposing a unified data augmentation framework with two novel operations on environment subgraphs to rationalize GNN prediction. We define the environment subgraph as the remaining subgraph after rationale identification and separation. The framework efficiently performs rationale–environment separation in therepresentation spacefor a node’s neighborhood graph or a graph’s complete structure to avoid the high complexity of explicit graph decoding and encoding. We conduct experiments on 17 datasets spanning node classification, graph classification, and graph regression. Results demonstrate that our framework is effective and efficient in rationalizing and enhancing GNNs for different levels of tasks on graphs.
more »
« less
Heterogeneous Graph Structure Learning for Graph Neural Networks
Heterogeneous Graph Neural Networks (HGNNs) have drawn increasing attention in recent years and achieved outstanding performance in many tasks. The success of the existing HGNNs relies on one fundamental assumption, i.e., the original heterogeneous graph structure is reliable. However, this assumption is usually unrealistic, since the heterogeneous graph in reality is inevitably noisy or incomplete. Therefore, it is vital to learn the heterogeneous graph structure for HGNNs rather than rely only on the raw graph structure. In light of this, we make the first attempt towards learning an optimal heterogeneous graph structure for HGNNs and propose a novel framework HGSL, which jointly performs Heterogeneous Graph Structure Learning and GNN parameters learning for classification task. Different from traditional GSL on homogeneous graph, considering the heterogeneity of different relations in heterogeneous graph, HGSL generates each relation subgraph independently. Specifically, in each generated relation subgraph, HGSL not only considers the feature similarity by generating feature similarity graph, but also considers the complex heterogeneous interactions in features and semantics by generating feature propagation graph and semantic graph. Then, these graphs are fused to a learned heterogeneous graph and optimized together with a GNN towards classification objective. Extensive experiments on real-world graphs demonstrate that the proposed framework significantly outperforms the state-of-the-art methods.
more »
« less
- PAR ID:
- 10358119
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 35
- Issue:
- 5
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 4697 to 4705
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical graph property prediction and text graph sentiment classification.more » « less
-
null (Ed.)Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification in graphs, due to their expressive power in capturing complex interdependency between nodes. To enable GNN learning, existing works typically assume that labeled nodes, from two or multiple classes, are provided, so that a discriminative classifier can be learned from the labeled data. In reality, this assumption might be too restrictive for applications, as users may only provide labels of interest in a single class for a small number of nodes. In addition, most GNN models only aggregate information from short distances ( e.g. , 1-hop neighbors) in each round, and fail to capture long-distance relationship in graphs. In this article, we propose a novel GNN framework, long-short distance aggregation networks, to overcome these limitations. By generating multiple graphs at different distance levels, based on the adjacency matrix, we develop a long-short distance attention model to model these graphs. The direct neighbors are captured via a short-distance attention mechanism, and neighbors with long distance are captured by a long-distance attention mechanism. Two novel risk estimators are further employed to aggregate long-short-distance networks, for PU learning and the loss is back-propagated for model learning. Experimental results on real-world datasets demonstrate the effectiveness of our algorithm.more » « less
-
Graph Neural Networks (GNNs) have been widely deployed in various real-world applications. However, most GNNs are black-box models that lack explanations. One strategy to explain GNNs is through counterfactual explanation, which aims to find minimum perturbations on input graphs that change the GNN predictions. Existing works on GNN counterfactual explanations primarily concentrate on the local-level perspective (i.e., generating counterfactuals for each individual graph), which suffers from information overload and lacks insights into the broader cross-graph relationships. To address such issues, we propose GlobalGCE, a novel global-level graph counterfactual explanation method. GlobalGCE aims to identify a collection of subgraph mapping rules as counterfactual explanations for the target GNN. According to these rules, substituting certain significant subgraphs with their counterfactual subgraphs will change the GNN prediction to the desired class for most graphs (i.e., maximum coverage). Methodologically, we design a significant subgraph generator and a counterfactual subgraph autoencoder in our GlobalGCE, where the subgraphs and the rules can be effectively generated. Extensive experiments demonstrate the superiority of our GlobalGCE compared to existing baselines.more » « less
-
Graph neural networks (GNNs) rely on the assumption of graph homophily, which, however, does not hold in some real-world scenarios. Graph heterophily compromises them by smoothing node representations and degrading their discrimination capabilities. To address this limitation, we propose H^2GNN, which implements Homophilic and Heterophilic feature aggregations to advance GNNs in graphs with homophily or heterophily. H^2GNN proceeds by combining local feature separation and adaptive message aggregation, where each node separates local features into similar and dissimilar feature vectors, and aggregates similarities and dissimilarities from neighbors based on connection property. This allows both similar and dissimilar features for each node to be effectively preserved and propagated, and thus mitigates the impact of heterophily on graph learning process. As dual feature aggregations introduce extra model complexity, we also offer a simplified implementation of H^2GNN to reduce training time. Extensive experiments on seven benchmark datasets have demonstrated that H^2GNN can significantly improve node classification performance in graphs with different homophily ratios, which outperforms state-of-the-art GNN models.more » « less
An official website of the United States government

