skip to main content


Title: E-Chem Education
The case for making Electrochemical Science and Engineering part of the core chemical engineering curriculum  more » « less
Award ID(s):
2143056
NSF-PAR ID:
10358311
Author(s) / Creator(s):
Date Published:
Journal Name:
The Electrochemical Society Interface
Volume:
31
Issue:
3
ISSN:
1064-8208
Page Range / eLocation ID:
50 to 52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering. 
    more » « less
  2. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  3. National reports have indicated colleges and universities need to increase the number of students graduating with engineering degrees to meet anticipated job openings in the near-term future. Fields like engineering are critical to the nation’s economic strength and competitiveness globally, and engineering expertise is needed to solve society’s most pressing problems. Yet only about 40% of students who aspire to an engineering degree follow the path to complete one, and an even smaller percentage of those students continue into an engineering career. Underlying students’ motivation to transform their engineering interest into an engineering career is the psychological construct of engineering identity. Engineering identity reflects the extent to which a person identifies with being an engineer. Previous research has focused on experiences or interventions that promote engineering identity, and some qualitative work has suggested students who are retained in engineering experience differences in engineering identity, but little research has tested the relationship between retention and engineering identity, especially modeling change in engineering identity over four years of college. The data for this study were taken from the 2013 College Senior Survey (CSS), administered to students at the end of their fourth year of college by the Cooperative Institutional Research Program (CIRP) at the Higher Education Research Institute at UCLA. Students’ responses to CSS items were then matched to their responses to the Freshman Survey (TFS), also administered by CIRP, at the very beginning of their first year of college. For this study, all students who indicated their intended major as engineering at the start of college constituted the sample, which included 1205 students at 72 universities. The dependent variable is a dichotomous variable indicating if students marked engineering as their major at the end of the fourth year of college. The main independent variable of interest in this study is engineering identity. Engineering identity was computed using exploratory factor analysis with three items from the CSS indicating the importance to students of becoming an authority in their chosen field, being recognized for contributions to their field, and making theoretical contributions to science. Hierarchical generalized linear modeling with robust standard errors was used to model engineering retention as the dependent variable was dichotomous in nature and the data were “nested” in structure (students nested within universities). Control variables include a pretest of engineering identity from the TFS, college experiences known to predict retention and other outcomes in engineering, demographic variables, precollege academic preparation, choice of engineering major, academic and social self-concept at college entry, and institutional characteristics. In the final model, engineering identity was a significant predictor of engineering retention, controlling for all other factors including the engineering identity pretest. 
    more » « less
  4. Contribution: This study shows that identification with engineering for engineering graduate students is positively and significantly predicted by engineering interest, competence, recognition, and interpersonal skills competence. Background: Prior studies of engineering identity on undergraduates identified several factors (e.g., engineering interest, engineering recognition) as positive predictors of identification of engineering. Engineering competence, achieved by participating in design projects, is a crucial part of students’ efforts to become more innovative engineers. Identity theory is used to understand undergraduates’ persistence in engineering, as students with stronger engineering identification are more likely to persist. More work is needed focusing on graduate students. Research Questions: Do engineering identity measurement frameworks studied for undergraduate students also apply to graduate students? Do they correlate with intention to complete the degree? What predicts the engineering identity of engineering Master's and doctoral students? Methodology: Interviews informed development and adaptation of a multi-scale survey instrument. Factor analyses identified four factors that relate to graduate engineering identity: engineering interest, engineering recognition, engineering competence, and interpersonal skills competence. Three sequential multiple linear regression models were used to predict engineering graduate students’ engineering identity. Findings: The final regression model, which includes student characteristics and the four factors resulting from Confirmatory Factor Analysis, predicts 60% of the variance in engineering identity—substantially more than similar undergraduate engineering identity models. All four factors were significant and positive predictors of graduate students’ engineering identity. The engineering recognition factor in particular needed adaptation to emphasize peers and faculty members over family, although family remained important. 
    more » « less
  5. As educators strive to broaden representation in engineering, it is important to take into account how youth perceive themselves in relation to engineering careers. Youth as young as ten years of age are assessing the appeal and achievability of engineering as a career. This study explores preadolescents’ perceptions of the desirability of engineering careers and the self-assessed characteristics which impact students’ interest in engineering. In particular, this work unpacks what attracts elementary students to engineering careers and what these students believe it takes to be an engineer. Drawing from a set of 56 student interviews, this work addresses the research question In what ways are elementary school students thinking about careers in engineering? Existing research indicates that students’ interest in engineering careers declines as students enter middle school; this study contributes to understanding influences on students’ interests when they are on the cusp of deciding whether to pursue engineering study and careers. As part of a study of a university-led engineering education outreach program in elementary classrooms, 5th grade students participated in 15- to 30-minute semi-structured interviews near the end of the academic year. Participants represented four classrooms in two suburban schools in the northeastern United States that had each engaged in 16-18 weeks of hands-on engineering activities led by undergraduate engineering students. Interviews focused on the students’ experiences with engineering and the engineering intervention, students’ role models, and students’ career aspirations. We utilized open coding to analyze the interviews and identified the keywords and themes that students used to describe why an engineering career would be appealing or unappealing and possible or impossible for them. Two themes characterized the interview data; these students’ receptivity to pursuing engineering careers appeared to be mediated by conceptions of engineering careers as involving skill (in idea generation or in creation of technology) or desire (the will to do engineering). This paper utilizes interview data to attend to students’ perspectives and expand our understanding of barriers and gateways to student interest in engineering study and careers. It also discusses the implications of the findings for teaching engineering with an eye on the messages conveyed about the nature of engineering practices, the characteristics of engineers, and how students’ interests intersect with engineering careers. 
    more » « less