skip to main content


Title: Correlations of r -process elements in very metal-poor stars as clues to their nucleosynthesis sites
Aims. Various nucleosynthesis studies have pointed out that the r -process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, and rank tests of elemental abundances), we look for causally correlated elemental abundance patterns and attempt to link them to astrophysical events. Some of these events produce the r -process elements jointly with iron, while others do not have any significant iron contribution. We try to (a) characterize these different types of events by their abundance patterns and (b) identify them among the existing set of suggested r -process sites. Methods. The Pearson and Spearman correlation coefficients were used in order to investigate correlations among r -process elements (X,Y) as well as their relation to iron (Fe) in VMP halo stars. We gradually tracked the evolution of those coefficients in terms of the element enrichments [X/Fe] or [X/Y] and the metallicity [Fe/H]. This approach, aided by cluster analysis to find different structures of abundance patterns and rank tests to identify whether several events contributed to the observed pattern, is new and provides deeper insights into the abundances of VMP stars. Results. In the early stage of our Galaxy, at least three r -process nucleosynthesis sites have been active. The first two produce and eject iron and the majority of the lighter r -process elements. We assign them to two different types of core-collapse events, not identical to regular core-collapse supernovae (CCSNe), which produce only light trans-Fe elements. The third category is characterized by a strong r -process and is responsible for the major fraction of the heavy main r -process elements without a significant coproduction of Fe. It does not appear to be connected to CCSNe, in fact most of the Fe found in the related r -process enriched stars must come from previously occurring CCSNe. The existence of actinide boost stars indicates a further division among strong r -process sites. We assign these two strong r -process sites to neutron star mergers without fast black hole formation and to events where the ejecta are dominated by black hole accretion disk outflows. Indications from the lowest-metallicity stars hint at a connection with massive single stars (collapsars) forming black holes in the early Galaxy.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10358452
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
663
ISSN:
0004-6361
Page Range / eLocation ID:
A70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Various nucleosynthesis studies have pointed out that the rapid neutron capture r-process elements in very metal-poor (VMP) halo stars might have different origins. It has been known that an r-process can either be obtained in neutron-rich low Ye conditions or in high entropy environments [see e.g. 1–5], an overview over many investigations has appeared recently [6]. In the present article we analyze with statistical methods the observational abundance patterns from trans-Fe elements up to the actinides and come to the conclusion that four to five categories of astrophysical events must have contributed. These include the ejection of Fe and trans-Fe elements Sr, Y, Zr (continuing possibly beyond to slightly higher mass numbers) in category 0 events (hereafter "C0"), Fe and weak r-process contributions (including Eu in moderate to slightly larger but varying amounts) in CI and CII events, strong r-process abundance patterns with no or negligible (in comparison to solar) Fe production in CIIIa and CIIIb events, where category CIIIb shows a tendency for an actinide boost behavior. When comparing these categories with presently existing nucleosynthesis predictions, we suggest to identify them (despite remaining uncertainties) with regular core-collapse supernovae, quark deconfinement supernovae, magneto-rotational supernovae, neutron star mergers, and outflows from black hole accretion tori. 
    more » « less
  2. Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. 
    more » « less
  3. null (Ed.)
    ABSTRACT Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected ∼100 old main-sequence turn-off stars (ages ≳12 Gyr) with kinematics compatible with the Milky Way stellar halo population in the Solar neighbourhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars (‘OHS’). We find that the observed abundances in the OHS with [Fe/H] > −1.5 are best explained by contributions from both CCSNe and SN Ia, where the fraction of SN Ia among all the metal-enriching SNe is up to 10–20 per cent for stars with high [Mg/Fe] ratios and up to 20–27 per cent for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H] > −1.5, ∼ 50–60 per cent of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo. 
    more » « less
  4. Abstract We place empirical constraints on the yields from zero- and low-metallicity core-collapse supernovae (CCSNe) using abundances measured in very metal-poor (VMP; [Fe/H] ≤ −2) damped Ly α absorbers (DLAs). For some abundance ratios ([N,Al,S/Fe]), VMP DLAs constrain the metal yields of the first SNe more reliably than VMP stars. We compile a large sample of high-S/N VMP DLAs from over 30 yr of literature, most with high-resolution spectral measurements. We infer the initial-mass-function-averaged CCSNe yield from the median values from the DLA abundance ratios of C, N, O, Al, Si, S, and Fe (over Fe and O). We assume that the DLAs are metal-poor enough that they represent galaxies in their earliest stages of evolution, when CCSNe are the only nucleosynthetic sources of the metals we analyze. We compare five sets of zero- and low-metallicity theoretical yields to the empirical yields derived in this work. We find that the five models agree with the DLA yields for ratios containing Si and S. Only one model (Heger & Woosley 2010, hereafter HW10) reproduced the DLA values for N, and one other model (Limongi & Chieffi 2018, hereafter LC18) reproduced [N/O]. We found little change in the theoretical yields with the adoption of an SN explosion landscape (where certain progenitor masses collapse into black holes, contributing no yields) onto HW10, but fixing explosion energy to progenitor mass results in wide disagreements between the predictions and DLA abundances. We investigate the adoption of a simple, observationally motivated initial distribution of rotational velocities for LC18 and find a slight improvement. 
    more » « less
  5. Abstract What is the origin of the oxygen we breathe, the hydrogen and oxygen (in form of water H 2 O) in rivers and oceans, the carbon in all organic compounds, the silicon in electronic hardware, the calcium in our bones, the iron in steel, silver and gold in jewels, the rare earths utilized, e.g. in magnets or lasers, lead or lithium in batteries, and also of naturally occurring uranium and plutonium? The answer lies in the skies. Astrophysical environments from the Big Bang to stars and stellar explosions are the cauldrons where all these elements are made. The papers by Burbidge (Rev Mod Phys 29:547–650, 1957) and Cameron (Publ Astron Soc Pac 69:201, 1957), as well as precursors by Bethe, von Weizsäcker, Hoyle, Gamow, and Suess and Urey provided a very basic understanding of the nucleosynthesis processes responsible for their production, combined with nuclear physics input and required environment conditions such as temperature, density and the overall neutron/proton ratio in seed material. Since then a steady stream of nuclear experiments and nuclear structure theory, astrophysical models of the early universe as well as stars and stellar explosions in single and binary stellar systems has led to a deeper understanding. This involved improvements in stellar models, the composition of stellar wind ejecta, the mechanism of core-collapse supernovae as final fate of massive stars, and the transition (as a function of initial stellar mass) from core-collapse supernovae to hypernovae and long duration gamma-ray bursts (accompanied by the formation of a black hole) in case of single star progenitors. Binary stellar systems give rise to nova explosions, X-ray bursts, type Ia supernovae, neutron star, and neutron star–black hole mergers. All of these events (possibly with the exception of X-ray bursts) eject material with an abundance composition unique to the specific event and lead over time to the evolution of elemental (and isotopic) abundances in the galactic gas and their imprint on the next generation of stars. In the present review, we want to give a modern overview of the nucleosynthesis processes involved, their astrophysical sites, and their impact on the evolution of galaxies. 
    more » « less