A powerful technique to trace the signatures of the first stars is through the metal enrichment in concentrated reservoirs of hydrogen, such as the damped Lyα absorbers (DLAs) in the early Universe. We conducted a survey aimed at discovering DLAs along sight lines to high-z quasars in order to measure element abundances at z > 4. Here we report our first results from this survey for 10 DLAs with redshifts of ≈4.2–5.0. We determine abundances of C, O, Si, S, and Fe, and thereby the metallicities and dust depletions. We find that DLA metallicities at z > 4.5 show a wide diversity spanning ∼3 orders of magnitude. The metallicities of DLAs at 3.7 < z < 5.3 show a larger dispersion compared to that at lower redshifts. Combining our sample with the literature, we find a relatively smooth evolution of metallicity with redshift out to z ∼ 5.3, with a tentative (∼2 sigma) indication of a slight rise in metallicity at 4.5 < z < 5.3. The relative abundances exhibit C enhancement for both metal-poor and metal-enriched DLAs. In addition, α-element enhancement is evident in some DLAs, including a DLA at z = 4.7 with a supersolar metallicity. Comparing [C/O] and [Si/O] with model predictions, four DLAs in our survey seem consistent with a nonzero Population III contribution (three with >~30% Population III contribution). Combining our sample and the literature, we find the dust depletion strength and dust-to-metal ratios to correlate positively with the total (gas+solid phase) metallicity, confirming the presence of metal-rich, dusty DLAs even at ∼1 billion years after the Big Bang.
more »
« less
Empirical Constraints on Core-collapse Supernova Yields Using Very Metal-poor Damped Lyα Absorbers
Abstract We place empirical constraints on the yields from zero- and low-metallicity core-collapse supernovae (CCSNe) using abundances measured in very metal-poor (VMP; [Fe/H] ≤ −2) damped Ly α absorbers (DLAs). For some abundance ratios ([N,Al,S/Fe]), VMP DLAs constrain the metal yields of the first SNe more reliably than VMP stars. We compile a large sample of high-S/N VMP DLAs from over 30 yr of literature, most with high-resolution spectral measurements. We infer the initial-mass-function-averaged CCSNe yield from the median values from the DLA abundance ratios of C, N, O, Al, Si, S, and Fe (over Fe and O). We assume that the DLAs are metal-poor enough that they represent galaxies in their earliest stages of evolution, when CCSNe are the only nucleosynthetic sources of the metals we analyze. We compare five sets of zero- and low-metallicity theoretical yields to the empirical yields derived in this work. We find that the five models agree with the DLA yields for ratios containing Si and S. Only one model (Heger & Woosley 2010, hereafter HW10) reproduced the DLA values for N, and one other model (Limongi & Chieffi 2018, hereafter LC18) reproduced [N/O]. We found little change in the theoretical yields with the adoption of an SN explosion landscape (where certain progenitor masses collapse into black holes, contributing no yields) onto HW10, but fixing explosion energy to progenitor mass results in wide disagreements between the predictions and DLA abundances. We investigate the adoption of a simple, observationally motivated initial distribution of rotational velocities for LC18 and find a slight improvement.
more »
« less
- PAR ID:
- 10335676
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 927
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 64
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way.more » « less
-
Abundances of chemical elements in the interstellar and circumgalactic media of high-redshift galaxies offer important constraints on the nucleosynthesis by early generations of stars. Damped Lyα absorbers (DLAs) in spectra of high-redshift background quasars are excellent sites for obtaining robust measurements of element abundances in distant galaxies. Past studies of DLAs at redshifts z > 4 have measured abundances of 0.01 solar. Here we report the discovery of a DLA at z = 4.7372 with an exceptionally high degree of chemical enrichment. We estimate the H I column density in this absorber to be log (NH I/cm^−2) = 20.48 ± 0.15. Our analysis shows unusually high abundances of carbon and oxygen ([C/H] = 0.88 ± 0.17, [O/H] = 0.71 ± 0.16). Such a high level of enrichment a mere 1.2 Gyr after the Big Bang is surprising because of insufficient time for the required amount of star formation. To our knowledge, this is the first supersolar absorber found at z > 4.5. We find the abundances of Si and Mg to be [Si/H] = -0.56-0.35+0.40 and [Mg/H] = -0.59-0.50+0.27, confirming the metal-rich nature of this absorber. By contrast, Fe shows a much lower abundance ([Fe/H] = -1.53 ± 0.15). We discuss implications of our results for galactic chemical evolution models. The metallicity of this absorber is higher than that of any other known DLA and is >2 orders of magnitude above predictions of chemical evolution models and the NH I-weighted mean metallicity from previous studies at z > 4.5. The relative abundances (e.g., [O/Fe] = 2.29 ± 0.05, [C/Fe] = 2.46 ± 0.08) are also highly unusual compared to predictions for enrichment by early stars.more » « less
-
null (Ed.)ABSTRACT Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected ∼100 old main-sequence turn-off stars (ages ≳12 Gyr) with kinematics compatible with the Milky Way stellar halo population in the Solar neighbourhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars (‘OHS’). We find that the observed abundances in the OHS with [Fe/H] > −1.5 are best explained by contributions from both CCSNe and SN Ia, where the fraction of SN Ia among all the metal-enriching SNe is up to 10–20 per cent for stars with high [Mg/Fe] ratios and up to 20–27 per cent for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H] > −1.5, ∼ 50–60 per cent of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo.more » « less
-
Correlations of r -process elements in very metal-poor stars as clues to their nucleosynthesis sitesAims. Various nucleosynthesis studies have pointed out that the r -process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, and rank tests of elemental abundances), we look for causally correlated elemental abundance patterns and attempt to link them to astrophysical events. Some of these events produce the r -process elements jointly with iron, while others do not have any significant iron contribution. We try to (a) characterize these different types of events by their abundance patterns and (b) identify them among the existing set of suggested r -process sites. Methods. The Pearson and Spearman correlation coefficients were used in order to investigate correlations among r -process elements (X,Y) as well as their relation to iron (Fe) in VMP halo stars. We gradually tracked the evolution of those coefficients in terms of the element enrichments [X/Fe] or [X/Y] and the metallicity [Fe/H]. This approach, aided by cluster analysis to find different structures of abundance patterns and rank tests to identify whether several events contributed to the observed pattern, is new and provides deeper insights into the abundances of VMP stars. Results. In the early stage of our Galaxy, at least three r -process nucleosynthesis sites have been active. The first two produce and eject iron and the majority of the lighter r -process elements. We assign them to two different types of core-collapse events, not identical to regular core-collapse supernovae (CCSNe), which produce only light trans-Fe elements. The third category is characterized by a strong r -process and is responsible for the major fraction of the heavy main r -process elements without a significant coproduction of Fe. It does not appear to be connected to CCSNe, in fact most of the Fe found in the related r -process enriched stars must come from previously occurring CCSNe. The existence of actinide boost stars indicates a further division among strong r -process sites. We assign these two strong r -process sites to neutron star mergers without fast black hole formation and to events where the ejecta are dominated by black hole accretion disk outflows. Indications from the lowest-metallicity stars hint at a connection with massive single stars (collapsars) forming black holes in the early Galaxy.more » « less
An official website of the United States government

