skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Competition between allowed and first-forbidden β decays and the r -process
β − decay lifetimes are essential ingredients for r -process yield calculations. In N≈126 r -process waiting point nuclei first-forbidden and allowed β decays are expected to compete. Recent experiments performed at CERN/ISOLDE showed that 207,208 Hg decay predominantly via first-forbidden decays. In addition, following on a high statistics study of the β + / EC decay of 208 At, it is suggested that the Z>82, N<126 nuclei provide an excellent testing ground for global calculations addressing the competition between first-forbidden and allowed β decays.  more » « less
Award ID(s):
1927130
PAR ID:
10358512
Author(s) / Creator(s):
Editor(s):
Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
260
ISSN:
2100-014X
Page Range / eLocation ID:
03005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)
    β -decay rates of neutron-rich nuclei, in particular those located at neutron shell closures, play a central role in simulations of the heavy-element nucleosynthesis and resulting abundance distributions. We present β -decay half-lives of even-even N = 82 and N = 126 r -process waiting-point nuclei calculated in the approach based on relativistic quasiparticle random phase approximation with quasiparticle-vibration coupling. The calculations include both allowed and first-forbidden transitions. In the N = 82 chain, the quasiparticlevibration coupling has an important impact close to stability, as it increases the contribution of Gamow-Teller modes and improves the agreement with the available data. In the N = 126 chain, we find the decay to proceed dominantly via first-forbidden transitions, even when the coupling to vibrations is included. 
    more » « less
  2. Shell-model studies on the weak β -decay in nuclei relevant to astrophysical processes are carried out. The β -decay rates, as well as electron-capture rates in the s d - p f shell induced by Gamow–Teller (GT) transition, are evaluated in astrophysical environments. The weak rates for the Urca pair of nuclei with A = 31 in the island of inversion, which are important for the nuclear Urca processes in neutron star crusts, are investigated by shell-model calculations in the s d p f shell. The GT strength is evaluated in the s d p f shell for selected β -decays in the s d -shell nuclei, and the effects of the expansion of the configuration space on the quenching of the axial–vector coupling are examined. β -decay rates induced by first-forbidden (FF) transitions are studied by the Behrens–Bühring (BB) method for the isotones with N = 126 and compared with the Walecka method. The important role of the electron distortions in the β -decays of206Hg and207Tl is pointed out. 
    more » « less
  3. Pakou, A.; Bonatsos, D.; Lalazissis, G.; Souliotis, G. (Ed.)
    A program to investigate the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix by studying super-allowed mixed mirror β decays has been initiated at the TwinSol facility at Notre Dame. These mixed Fermi/Gamow-Teller (F-GT) decays, occurring between T=1/2 isospin doublets in mirror nuclei, provide a complimentary check on the data from super-allowed pure Fermi decays from 0 + to 0 + states. The first part of the program, involving the measurement of the lifetimes of the relevant nuclei to the required accuracy of one part in 10 3 or better, has nearly been completed. However, the additional complication introduced by F-GT mixing requires the use of an ion trap to measure the mixing ratio ρ with similar accuracy. The lifetime measurements, as well as progress in installing an ion trap at TwinSol , will be discussed. In addition, since the ion trap will require a dedicated beam line for its operation, an opportunity presented itself to greatly improve the performance of TwinSol for reaction studies with exotic nuclei. This took the form of an added dipole switching magnet coupled to a third solenoid to form the new TriSol facility currently under construction. The expected properties of TriSol , and its application to reaction studies of interest for nuclear astrophysics, will also be discussed. 
    more » « less
  4. Abstract We present nucleosynthesis and light-curve predictions for a new site of the rapid neutron capture process (r-process) from magnetar giant flares (GFs). Motivated by observations indicating baryon ejecta from GFs, J. Cehula et al. proposed that mass ejection occurs after a shock is driven into the magnetar crust during the GF. We confirm using nuclear reaction network calculations that these ejecta synthesize moderate yields of third-peakr-process nuclei and more substantial yields of lighterr-nuclei, while leaving a sizable abundance of free neutrons in the outermost fastest expanding ejecta layers. The finalr-process mass fraction and distribution are sensitive to the relative efficiencies ofα-capture andn-capture freeze-outs. We use our nucleosynthesis output in a semianalytic model to predict the light curves of novae breves, the transients following GFs powered by radioactive decay. For a baryonic ejecta mass similar to that inferred of the 2004 Galactic GF from SGR 1806-20, we predict a peak UV/optical luminosity of ∼1039–1040erg s−1at ∼10–15 minutes, rendering such events potentially detectable to several Mpc following a gamma-ray trigger by wide-field transient monitors such as ULTRASAT/UVEX. The peak luminosity and timescale of the transient increase with the GF strength due to the larger ejecta mass. Although GFs likely contribute 1%–10% of the total Galacticr-process budget, their short delay-times relative to star formation make them an attractive source to enrich the earliest generations of stars. 
    more » « less
  5. Meteoritic analysis demonstrates that radioactive nuclei heavier than iron were present in the early Solar System. Among them, 129I and 247Cm both have a rapid neutron-capture process (r process) origin and decay on the same timescale (≃ 15.6 Myr). We show that the 129I/247Cm abundance ratio in the early Solar System (438±184) is immune to galactic evolution uncertainties and represents the first direct observational constraint for the properties of the last r-process event that polluted the pre-solar nebula. We investigate the physical conditions of this event using nucleosynthesis calculations and demonstrate that moderately neutron-rich ejecta can produce the observed ratio. We conclude that a dominant contribution by exceedingly neutron-rich ejecta is highly disfavoured. 
    more » « less