Metagenomics has enabled sequencing of viral communities from a myriad of different environments. Viral metagenomic studies routinely uncover sequences with no recognizable homology to known coding regions or genomes. Nevertheless, complete viral genomes have been constructed directly from complex community metagenomes, often through tedious manual curation. To address this, we developed the software tool virMine to identify viral genomes from raw reads representative of viral or mixed (viral and bacterial) communities. virMine automates sequence read quality control, assembly, and annotation. Researchers can easily refine their search for a specific study system and/or feature(s) of interest. In contrast to other viral genome detection tools that often rely on the recognition of viral signature sequences, virMine is not restricted by the insufficient representation of viral diversity in public data repositories. Rather, viral genomes are identified through an iterative approach, first omitting non-viral sequences. Thus, both relatives of previously characterized viruses and novel species can be detected, including both eukaryotic viruses and bacteriophages. Here we present virMine and its analysis of synthetic communities as well as metagenomic data sets from three distinctly different environments: the gut microbiota, the urinary microbiota, and freshwater viromes. Several new viral genomes were identified and annotated, thus contributing to our understanding of viral genetic diversity in these three environments.
more »
« less
Accurate viral genome reconstruction and host assignment with proximity-ligation sequencing
Viruses play crucial roles in the ecology of microbial communities, yet they remain relatively understudied in their native environments. Despite many advancements in high-throughput whole-genome sequencing (WGS), sequence assembly, and annotation of viruses, the reconstruction of full-length viral genomes directly from metagenomic sequencing is possible only for the most abundant phages and requires long-read sequencing technologies. Additionally, the prediction of their cellular hosts remains difficult from conventional metagenomic sequencing alone. To address these gaps in the field and to accelerate the study of viruses directly in their native microbiomes, we developed an end-to-end bioinformatics platform for viral genome reconstruction and host attribution from metagenomic data using proximity-ligation sequencing (i.e., Hi-C). We demonstrate the capabilities of the platform by recovering and characterizing the metavirome of a variety of metagenomes, including a fecal microbiome that has also been sequenced with accurate long reads, allowing for the assessment and benchmarking of the new methods. The platform can accurately extract numerous near-complete viral genomes even from highly fragmented short-read assemblies and can reliably predict their cellular hosts with minimal false positives. To our knowledge, this is the first software for performing these tasks. Being significantly cheaper than long-read sequencing of comparable depth, the incorporation of proximity-ligation sequencing in microbiome research shows promise to greatly accelerate future advancements in the field.
more »
« less
- Award ID(s):
- 1829640
- PAR ID:
- 10358630
- Date Published:
- Journal Name:
- bioRxiv
- ISSN:
- 2692-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal matsAbstract Many microbes in nature reside in dense, metabolically interdependent communities. We investigated the nature and extent of microbe-virus interactions in relation to microbial density and syntrophy by examining microbe-virus interactions in a biomass dense, deep-sea hydrothermal mat. Using metagenomic sequencing, we find numerous instances where phylogenetically distant (up to domain level) microbes encode CRISPR-based immunity against the same viruses in the mat. Evidence of viral interactions with hosts cross-cutting microbial domains is particularly striking between known syntrophic partners, for example those engaged in anaerobic methanotrophy. These patterns are corroborated by proximity-ligation-based (Hi-C) inference. Surveys of public datasets reveal additional viruses interacting with hosts across domains in diverse ecosystems known to harbour syntrophic biofilms. We propose that the entry of viral particles and/or DNA to non-primary host cells may be a common phenomenon in densely populated ecosystems, with eco-evolutionary implications for syntrophic microbes and CRISPR-mediated inter-population augmentation of resilience against viruses.more » « less
-
ABSTRACT Metagenomics is a powerful tool for characterising viruses, with broad applications across diverse disciplines, from understanding the ecology and evolutionary history of viruses to identifying causative agents of emerging outbreaks with unknown aetiology. Additionally, metagenomic data contains valuable information about the amount of virus present within samples. However, we have yet to leverage metagenomics to assess viral load, which is a key epidemiological parameter. To effectively use sequencing outputs to inform transmission, we need to understand the relationship between read depth and viral load across a diverse set of viruses. Here, using target enrichment sequencing, we investigated the detection and recovery of virus genomes by spiking known concentrations of DNA and RNA viruses into wild rodent faecal samples. In total, 15 experimental replicates were sequenced with target enrichment sequencing and compared to shotgun sequencing of the same background samples. Target enriched sequencing recovered all spike-in viruses at every concentration (102, 103, and 105± 1 log genome copies) and showed a log-linear relationship between spike-in concentration and mean read depth. Background viruses (includingKobuvirusandCardiovirus) were recovered consistently across all biological and technical replicates, but genome coverage was variable between virus genera and likely reflected the composition of target enrichment probe panel. Overall, our study highlights the strengths and weaknesses of using commercially available panels to quantify and characterise wildlife viromes, and underscores the importance of probe panel design for accurately interpreting coverage and read depth. To advance the use of metagenomics for understanding virus transmission, further research will be needed to elucidate how sequencing strategy (e.g. library depth, pooling), virome composition, and probe design influence viral read counts and genome coverage.more » « less
-
Abstract Dinoflagellates from the family Symbiodiniaceae are phototrophic marine protists that engage in symbiosis with diverse hosts. Their large and distinct genomes are characterized by pervasive gene duplication and large-scale retroposition events. However, little is known about the role and scale of horizontal gene transfer (HGT) in the evolution of this algal family. In other dinoflagellates, high levels of HGTs have been observed, linked to major genomic transitions, such as the appearance of a viral-acquired nucleoprotein that originated via HGT from a large DNA algal virus. Previous work showed that Symbiodiniaceae from different hosts are actively infected by viral groups, such as giant DNA viruses and ssRNA viruses, that may play an important role in coral health. Latent viral infections may also occur, whereby viruses could persist in the cytoplasm or integrate into the host genome as a provirus. This hypothesis received experimental support; however, the cellular localization of putative latent viruses and their taxonomic affiliation are still unknown. In addition, despite the finding of viral sequences in some genomes of Symbiodiniaceae, viral origin, taxonomic breadth, and metabolic potential have not been explored. To address these questions, we searched for putative viral-derived proteins in thirteen Symbiodiniaceae genomes. We found fifty-nine candidate viral-derived HGTs that gave rise to twelve phylogenies across ten genomes. We also describe the taxonomic affiliation of these virus-related sequences, their structure, and their genomic context. These results lead us to propose a model to explain the origin and fate of Symbiodiniaceae viral acquisitions.more » « less
-
metaviralSPAdes: Assembly of Viruses From Metagenomic Data Abstract Motivation: Although the set of currently known viruses has been steadily expanding, only a tiny fraction of the Earth's virome has been sequenced so far. Shotgun metagenomic sequencing provides an opportunity to reveal novel viruses but faces the computational challenge of identifying viral genomes that are often difficult to detect in metagenomic assemblies. Results: We describe a metaviralSPAdes tool for identifying viral genomes in metagenomic assembly graphs that is based on analyzing variations in the coverage depth between viruses and bacterial chromosomes. We benchmarked metaviralSPAdes on diverse metagenomic datasets, verified our predictions using a set of virus-specific Hidden Markov Models, and demonstrated that it improves on the state-of-the-art viral identification pipelines. Availability: metaviralSPAdes includes viralAssembly, viralVerify, and viralComplete modules that are available as standalone packages: https://github.com/ablab/spades/tree/metaviral_publication, https://github.com/ablab/viralVerify/ and https://github.com/ablab/viralComplete/. Supplementary information: Supplementary data are available at Bioinformatics online.more » « less