skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: A high temperature approach to synthesize new optical and x-ray luminescent nanomaterials for biomedical applications
A high temperature reactor was developed to synthesize new scintillating nanoparticles that traditionally would sinter. Yttrium pyrosilicate nanoparticles were synthesized with optical properties suitable for x-ray biomedical applications.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
OSA Advanced Photonics Congress 2021
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long time ago, Brochard and de Gennes predicted the possibility of significantly decreasing the critical magnetic feld of the Fredericksz transition (the magnetic Fredericksz threshold) in a mixture of nematic liquid crystals and ferromagnetic particles, the so-called ferronematics. This phenomenon has rarely been measured, usually due to soft homeotropic anchoring induced at the nanoparticle surface. Here we present an optical study of the magnetic Fredericksz transition combined with a light scattering study of the classical nematic liquid crystal, 5CB, doped with 6 nm diameter magnetic and non-magnetic nanoparticles. Surprisingly, for both nanoparticles, we observe at room temperature a net decrease of the threshold field of the Fredericksz transition at low nanoparti cle concentrations, which appears associated with a coating of the nanoparticles by a brush of polydimethylsiloxane copolymer chains inducing planar anchoring of the director on the nanoparticle surface. Moreover the magnetic Fredericksz threshold exhibits non-monotonic behaviour as a function of the nanoparticle concentration for both types of nanoparticles, first decreasing down to a value from 23% to 31% below that of pure 5CB, then increasing with a further increase of nanoparticle concentration. This is interpreted as an aggregation starting at around 0.02 weight fraction that consumes more isolated nanoparticles than those introduced when the concentration is increased above c = 0:05 weight fraction (volume fraction 3:5 x 10^-2). This shows the larger effect of isolated nanoparticles on the threshold with respect to aggregates. From dynamic light scattering measurements we deduced that, if the decrease of the magnetic threshold when the nanoparticle concentration increases is similar for both kinds of nanoparticles, the origin of this decrease is different for magnetic and non-magnetic nanoparticles. For non-magnetic nanoparticles, the behavior may be associated with a decrease of the elastic constant due to weak planar anchoring. For magnetic nanoparticles there are non-negligible local magnetic interactions between liquid crystal molecules and magnetic nanoparticles, leading to an increase of the average order parameter. This magnetic interaction thus favors an easier liquid crystal director rotation in the presence of external magnetic field, able to reorient the magnetic moments of the nanoparticles along with the molecules. 
    more » « less
  2. null (Ed.)
    Abstract Direct formation of ultra-small nanoparticles on carbon supports by rapid high temperature synthesis method offers new opportunities for scalable nanomanufacturing and the synthesis of stable multi-elemental nanoparticles. However, the underlying mechanisms affecting the dispersion and stability of nanoparticles on the supports during high temperature processing remain enigmatic. In this work, we report the observation of metallic nanoparticles formation and stabilization on carbon supports through in situ Joule heating method. We find that the formation of metallic nanoparticles is associated with the simultaneous phase transition of amorphous carbon to a highly defective turbostratic graphite (T-graphite). Molecular dynamic (MD) simulations suggest that the defective T-graphite provide numerous nucleation sites for the nanoparticles to form. Furthermore, the nanoparticles partially intercalate and take root on edge planes, leading to high binding energy on support. This interaction between nanoparticles and T-graphite substrate strengthens the anchoring and provides excellent thermal stability to the nanoparticles. These findings provide mechanistic understanding of rapid high temperature synthesis of metal nanoparticles on carbon supports and the origin of their stability. 
    more » « less
  3. The direct synthesis of highly water-soluble nanoparticles has attracted intensive interest, but systematic size control has not been reported. Here, we developed a general method for synthesizing monodisperse water-soluble iron oxide nanoparticles with nanometer-scale size increments from 4 nm to 13 nm in a single reaction. Precise size control was achieved by continuous growth in an amphiphilic solvent, diethylene glycol (DEG), where the growth step was separated from the nucleation step by sequential addition of a reactant. There was only one reactant in the synthesis and no need for additional capping agents and reducing agents. This study reveals the “living growth” character of iron oxide nanoparticles synthesised in an amphiphilic solvent. The synthetic method shows high reproducibility. The as-prepared iron oxide nanoparticles are extremely water soluble without any surface modification. Surprisingly, the synthesized 9 nm iron oxide nanoparticles exhibit extremely high transversal and longitudinal relaxivities of 425 mM −1 s −1 and 32 mM −1 s −1 respectively, which is among the highest transversal relaxivity in the literature for sub-10 nm spherical nanoparticles. This study will not only shed light on the continuous growth phenomenon of iron oxide nanoparticles in an amphiphilic solvent, but could also stimulate the synthesis and application of iron oxide nanoparticles. The continuous growth method could be further extended to other materials for the controlled synthesis of water-soluble nanoparticles. 
    more » « less
  4. Controlling the size distribution of nanoparticles is important for many applications and typically involves the use of ligands during synthesis. In this study, we show that the mechanism of size focusing involves a dependence of the growth rate on the size of the nanoparticles and the ligand coverage on the surface of the nanoparticles. To demonstrate these effects, we used in situ small angle X-ray scattering (SAXS) and population balance kinetic modeling (PBM) to investigate the evolution of size distribution during the synthesis of colloidal Pd metal nanoparticles. Despite temporal overlap of nucleation and growth, our in situ SAXS show size focusing of the distribution under different synthetic conditions (different concentrations of metal and ligand as well as solvent type). To understand the mechanism of size focusing using PBM, we systematically studied how the evolution of the nanoparticle size distribution is affected by nucleation rate, and dependence of the growth rate constant on ligand surface coverage, and size of the nanoparticles. We show that continuous nucleation contributes to size defocusing. However, continuous nucleation results in different reaction times for the nanoparticle population leading to time and size-dependent ligand surface coverage. Using density functional theory (DFT) calculations and Brønsted–Evans–Polanyi relations, we show that as the population grows, larger nanoparticles grow more slowly than smaller ones due to lower intrinsic activity and higher ligand coverage on the surface. Therefore, despite continuous nucleation, the faster growth of smaller nanoparticles in the population leads to size focusing. The size focusing behaviour (due to faster growth of smaller nanoparticles) was found to be model independent and similar results were demonstrated under different nucleation and growth pathways ( e.g. growth via ion reduction on the surface and/or monomer addition). Our results provide a microscopic connection between kinetics and thermodynamics of nanoparticle growth and metal–ligand binding, and their effect on the size distribution of colloidal nanoparticles. 
    more » « less
  5. In the era of the advanced nanomaterials, use of nanoparticles has been highlighted in biomedical research. However, the demonstration of DNA plasmid delivery with nanoparticles for in vivo gene delivery experiments must be carefully tested due to many possible issues, including toxicity. The purpose of the current study was to deliver a Notch Intracellular Domain (NICD)-encoded plasmid via poly(lactic- co -glycolic acid) (PLGA) nanoparticles and to investigate the toxic environmental side effects for an in vivo experiment. In addition, we demonstrated the target delivery to the endothelium, including the endocardial layer, which is challenging to manipulate gene expression for cardiac functions due to the beating heart and rapid blood pumping. For this study, we used a zebrafish animal model and exposed it to nanoparticles at varying concentrations to observe for specific malformations over time for toxic effects of PLGA nanoparticles as a delivery vehicle. Our nanoparticles caused significantly less malformations than the positive control, ZnO nanoparticles. Additionally, the NICD plasmid was successfully delivered by PLGA nanoparticles and significantly increased Notch signaling related genes. Furthermore, our image based deep-learning analysis approach evaluated that the antibody conjugated nanoparticles were successfully bound to the endocardium to overexpress Notch related genes and improve cardiac function such as ejection fraction, fractional shortening, and cardiac output. This research demonstrates that PLGA nanoparticle-mediated target delivery to upregulate Notch related genes which can be a potential therapeutic approach with minimum toxic effects. 
    more » « less