skip to main content


Title: Student Outcomes from the Collective Design and Delivery of Culturally Relevant Engineering Outreach Curricula in Rural and Appalachian Middle Schools
Middle school is a pivotal time for career choice, and research is rich with studies on how students perceive engineering, as well as corresponding intervention strategies to introduce younger students to engineering and inform their conceptions of engineering. Unfortunately, such interventions are typically not designed in culturally relevant ways. Consequently, there continues to be a lack of students entering engineering and a low level of diverse candidates for this profession. The purpose of this study was to explore how students in rural and Appalachian Virginia conceive of engineering before and after engagement with culturally relevant hands-on activities in the classroom. We used student responses to the Draw an Engineer Test (DAET), consisting of a drawing and several open-ended prompts administered before and after the set of engagements, to answer our research questions related to changes in students’ conceptions of engineering. We used this study to develop recommendations for teachers for the use of such engineering engagement practices and how to best assess their outcomes, including looking at the practicality of the DAET. Overall, we found evidence that our classroom engagements positively influenced students’ conceptions of engineering in these settings.  more » « less
Award ID(s):
1657263
PAR ID:
10358700
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
IJEE International Journal of Engineering Education
Volume:
37
Issue:
4
ISSN:
2540-9808
Page Range / eLocation ID:
884-899
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this research study is to understand teacher experiences throughout their second year of engagement in the Virginia Tech Partnering with Educators and Engineers in Rural Schools partnership. This partnership is an assets-based community partnership in a rural environment between middle school teachers, regional industry, and university affiliates that is focused on implementing recurrent, hands-on, culturally relevant engineering activities for middle school students. This qualitative study uses constant comparative methodology informed by grounded theory on teacher interviews to capture both teacher experiences in the partnership as well as teacher-identified assets in their classrooms and school communities. Using the sensitizing concepts of pedagogical content knowledge, self-efficacy, and the Interconnected Model of Teacher Growth, this study found that while teachers experienced the program differently depending on their contextual setting of their schools, all teachers expressed shifts in their recognition of and value placed on community assets. Findings also suggest that teachers greatly value involving industry and university partners in the classroom to highlight the applications of engineering in their communities and support a reimagination of engineering conceptions and careers for both students and teachers. Teachers reported that the hands-on, team-based, culturally relevant engineering activities engaged learners and showcased individual strengths in ways they otherwise do not see exhibited in their traditional curriculum. The partnership ultimately allowed teachers to identify how assets in schools’ rural communities, beyond those previously identified within their schools, could aid them in further developing and implementing engineering activities. With teachers serving as role models for students, it is important to support teachers’ reimagination of engineering conceptions and integration into the classroom to ultimately increase students’ engineering engagement. Our findings highlight the value of community-based approaches in supporting engineering integration in the classroom and describe the assets that teachers note as being the most significant in their community. 
    more » « less
  2. null (Ed.)
    Helping middle school students explore potential career opportunities based on local culture and values was the foundation of a study of rural Appalachian middle school students conducted at a major university in the United States. Specifically we focused on positively impacting locally and culturally-relevant conceptions of engineering through participation in multiple classroom activities developed through a partnership of teachers, researchers, and local industry partners. To date, the study has revealed a positive change in the understanding and conception of the field of engineering by students who participated in the culturally relevant classroom activities. As a basis for this work, ample literature was found to describe middle school students’ conceptions of engineering but there was limited available research on the value of relating the field of engineering to a student’s local culture. We are offering a resource exchange session to introduce the approach of designing and using classroom engineering exploration activities directly connected to the students’ local environment, featuring the types of engineering work performed in the area and local problems related to engineering. Effective practices for working with industry partners to help design and deliver the classroom activities will also be shared. An example of a classroom intervention will be featured where students explored potential and kinetic energy by designing and building mountain roads out of simple hardware store materials. This activity allowed students to make connections between the roads they built in the classroom and the geography of their local mountainous, rural area. Industry partners participated in this intervention by offering insights from their technical backgrounds and company practices and assisted with the hands-on lessons in the classroom. This was one of six culturally relevant engineering activities provided to 757 sixth-grade students at seven Appalachian middle schools. 
    more » « less
  3. Baldwin, Amy ; Danns, Donna ; Howe, Chad (Ed.)
    In this presentation, we will analyze and explain how three university faculty designed an intensive 12-day science methods course for preservice teachers to learn about science. The course, which is part of the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation, is focused on differentiating science and engineering content for emerging bilingual students (English/Spanish). After the course, teacher educators then implement this content with 4th - 8th grade students in the STEM Summer Scholars Institute, a 15-day academic enrichment program for emerging bilingual students. Not only will we explain how this differentiation toolkit is helping preservice teachers to build more inclusive and supporting environments in science in their current practice, but we also explore how other content, such asco-teaching models and science and engineering methodologies, shaped their teaching skills. The differentiation toolkit consists of the use of technology, hands-on materials, and multimodalities, and we examine how the preservice teacher-students interactions are structured following a culturally and linguistically relevant methodology for the classroom. Project faculty and teacher educators will discuss our experiences in implementing these methodologies (science and culturally and linguistically relevant practices) including areas of growth. 
    more » « less
  4. Oftentimes engineering design tasks are thought of as acultural and devoid of community inclusion and values. However, engineering design is inherently a cultural endeavor. Problems needing engineering solutions or design thinking are situated in a specific community and need community solutions. This work in progress paper describes initial efforts from a project to help elementary and middle school teachers create culturally relevant engineering design tasks for implementation in their classrooms. To integrate best practices for culturally relevant pedagogy, the engineering design framework developed by UTeach Engineering was adapted to specifically address community needs and cultural values. Changes to the framework also include culturally relevant instructional strategies for classroom implementation. To situate the engineering design steps within a culturally relevant framework questions involving communities and students’ cultural needs, values, and expectations were posed in each stage of the design process. A water filtration engineering design task was situated in the cultural concept of “Mni Wiconi” (Water is life in the Dakota language). This was taught in a summer professional development workshop for a cohort of elementary and middle school teachers, in rural North Dakota, with school districts comprised of large Native American student populations. Teachers adapted this design task for their individual classrooms and content areas (science, math, social studies, ELA) and implemented it in their classrooms in the fall of 2021. Additional support for teachers was provided with fall workshop days aimed at helping them with the facilitation of a culturally relevant engineering task. To integrate culturally relevant teaching and good engineering design tasks, the North Dakota Department of Public Instruction’s Native American Essential Understandings Teachings of our Elder’s website was used. This allowed teachers and students to have firsthand knowledge of how various science and engineering concepts are framed within the indigenous community. Professional development focused on how to situate culturally responsive teaching in engineering design. For example, in one of the school districts the water filtration task was related to increased pollution of a nearby lake which holds significant importance for the local Tribal Nation. In addition to being able to visibly witness the demand for cleaner water, the book “We are Water Protectors” written by Carole Lindstrom, was used to provide cultural grounding for the Identify and Describe stages of the engineering design framework. Case studies of how teachers incorporated the water filtration design task into their lesson plans are presented along with their suggestions on how to improve classroom implementation. Future work in the program includes teachers and their students developing engineering design tasks situated in their own communities and cultures. 
    more » « less
  5. Background: Women and people of color are consistently underrepresented in science, technology, engineering, and math (STEM) fields and careers. Though there are myriad factors underlying these gaps, one potential variable may be the extent to which these students feel connected to their STEM classroom experiences. Purpose: The present study investigated the potential of a service-learning experience to support STEM engagement for underrepresented youth. Methodology/Approach: Two cohorts of high school students participated in a summer program through which they built “solar suitcases” to provide electricity for communities in need. Observations and student surveys measured student engagement and changes in STEM attitudes, dispositions, and beliefs. Findings/Conclusions: Students were highly engaged in service-learning activities and demonstrated improved Science Fascination, Science Values, and STEM Career Affinity after participating in the program. Implications: Implications for the design and delivery of culturally relevant service-learning experiences are discussed.

     
    more » « less