skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond Point Prediction: Capturing Zero-Inflated & Heavy-Tailed Spatiotemporal Data with Deep Extreme Mixture Models
Zero-inflated, heavy-tailed spatiotemporal data is common across science and engineering, from climate science to meteorology and seismology. A central modeling objective in such settings is to forecast the intensity, frequency, and timing of extreme and non-extreme events; yet in the context of deep learning, this objective presents several key challenges. First, a deep learning framework applied to such data must unify a mixture of distributions characterizing the zero events, moderate events, and extreme events. Second, the framework must be capable of enforcing parameter constraints across each component of the mixture distribution. Finally, the framework must be flexible enough to accommodate for any changes in the threshold used to define an extreme event after training. To address these challenges, we propose Deep Extreme Mixture Model (DEMM), fusing a deep learning-based hurdle model with extreme value theory to enable point and distribution prediction of zero-inflated, heavy-tailed spatiotemporal variables. The framework enables users to dynamically set a threshold for defining extreme events at inference-time without the need for retraining. We present an extensive experimental analysis applying DEMM to precipitation forecasting, and observe significant improvements in point and distribution prediction. All code is available at https://github.com/andrewmcdonald27/DeepExtremeMixtureModel.  more » « less
Award ID(s):
2006633
PAR ID:
10358709
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Zhang, Aidong; Rangwala, Huzefa
Date Published:
Journal Name:
KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
Page Range / eLocation ID:
2020 to 2028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geospatio-temporal data are pervasive across numerous application domains.These rich datasets can be harnessed to predict extreme events such as disease outbreaks, flooding, crime spikes, etc.However, since the extreme events are rare, predicting them is a hard problem. Statistical methods based on extreme value theory provide a systematic way for modeling the distribution of extreme values. In particular, the generalized Pareto distribution (GPD) is useful for modeling the distribution of excess values above a certain threshold. However, applying such methods to large-scale geospatio-temporal data is a challenge due to the difficulty in capturing the complex spatial relationships between extreme events at multiple locations. This paper presents a deep learning framework for long-term prediction of the distribution of extreme values at different locations. We highlight its computational challenges and present a novel framework that combines convolutional neural networks with deep set and GPD. We demonstrate the effectiveness of our approach on a real-world dataset for modeling extreme climate events. 
    more » « less
  2. null (Ed.)
    A key problem in computational sustainability is to understand the distribution of species across landscapes over time. This question gives rise to challenging large-scale prediction problems since (i) hundreds of species have to be simultaneously modeled and (ii) the survey data are usually inflated with zeros due to the absence of species for a large number of sites. The problem of tackling both issues simultaneously, which we refer to as the zero-inflated multi-target regression problem, has not been addressed by previous methods in statistics and machine learning. In this paper, we propose a novel deep model for the zero-inflated multi-target regression problem. To this end, we first model the joint distribution of multiple response variables as a multivariate probit model and then couple the positive outcomes with a multivariate log-normal distribution. By penalizing the difference between the two distributions’ covariance matrices, a link between both distributions is established. The whole model is cast as an end-to-end learning framework and we provide an efficient learning algorithm for our model that can be fully implemented on GPUs. We show that our model outperforms the existing state-of-the-art baselines on two challenging real-world species distribution datasets concerning bird and fish populations. 
    more » « less
  3. ABSTRACT The prediction of extreme events in time series is a fundamental problem arising in many financial, scientific, engineering, and other applications. We begin by establishing a general Neyman–Pearson‐type characterization of optimal extreme event predictors in terms of density ratios. This yields new insights and several closed‐form optimal extreme event predictors for additive models. These results naturally extend to time series, where we study optimal extreme event prediction for both light‐ and heavy‐tailed autoregressive and moving average models. Using a uniform law of large numbers for ergodic time series, we establish the asymptotic optimality of an empirical version of the optimal predictor for autoregressive models. Using multivariate regular variation, we obtain an expression for the optimal extremal precision in heavy‐tailed infinite moving averages, which provides theoretical bounds on the ability to predict extremes in this general class of models. We address the important problem of predicting solar flares by applying our theory and methodology to a state‐of‐the‐art time series consisting of solar soft x‐ray flux measurements. Our results demonstrate the success and limitations in solar flare forecasting of long‐memory autoregressive models and long‐range‐dependent, heavy‐tailed FARIMA models. 
    more » « less
  4. Normalizing flows—a popular class of deep generative models—often fail to represent extreme phenomena observed in real-world processes. In particular, existing normalizing flow architectures struggle to model multivariate extremes, characterized by heavy-tailed marginal distributions and asymmetric tail dependence among variables. In light of this shortcoming, we propose COMET (COpula Multivariate ExTreme) Flows, which decompose the process of modeling a joint distribution into two parts: (i) modeling its marginal distributions, and (ii) modeling its copula distribution. COMET Flows capture heavy-tailed marginal distributions by combining a parametric tail belief at extreme quantiles of the marginals with an empirical kernel density function at mid-quantiles. In addition, COMET Flows capture asymmetric tail dependence among multivariate extremes by viewing such dependence as inducing a low-dimensional manifold structure in feature space. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of COMET flows in capturing both heavy-tailed marginals and asymmetric tail dependence compared to other state-of-the-art baseline architectures. All code is available at https://github.com/andrewmcdonald27/COMETFlows. 
    more » « less
  5. null (Ed.)
    Stochastic gradient descent with momentum (SGDm) is one of the most popular optimization algorithms in deep learning. While there is a rich theory of SGDm for convex problems, the theory is considerably less developed in the context of deep learning where the problem is non-convex and the gradient noise might exhibit a heavy-tailed behavior, as empirically observed in recent studies. In this study, we consider a \emph{continuous-time} variant of SGDm, known as the underdamped Langevin dynamics (ULD), and investigate its asymptotic properties under heavy-tailed perturbations. Supported by recent studies from statistical physics, we argue both theoretically and empirically that the heavy-tails of such perturbations can result in a bias even when the step-size is small, in the sense that \emph{the optima of stationary distribution} of the dynamics might not match \emph{the optima of the cost function to be optimized}. As a remedy, we develop a novel framework, which we coin as \emph{fractional} ULD (FULD), and prove that FULD targets the so-called Gibbs distribution, whose optima exactly match the optima of the original cost. We observe that the Euler discretization of FULD has noteworthy algorithmic similarities with \emph{natural gradient} methods and \emph{gradient clipping}, bringing a new perspective on understanding their role in deep learning. We support our theory with experiments conducted on a synthetic model and neural networks. 
    more » « less