skip to main content

Title: Tidal dissipation impact on the eccentric onset of common envelope phases in massive binary star systems
ABSTRACT Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $10\, {\rm M}_{\odot }$ ($15\, {\rm M}_{\odot }$) primary star interacting with a $1.4\, {\rm M}_{\odot }$ companion, systems with pericentre distances within 3 au (6 au) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in more » systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common-envelope eccentricity on the resulting compact binary merit further study. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
5569 to 5582
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The hyper-velocity star S5-HVS1, ejected 5 Myr ago from the Galactic Centre at 1800 km s−1, was most likely produced by tidal break-up of a tight binary by the supermassive black hole SgrA*. Taking a Monte Carlo approach, we show that the former companion of S5-HVS1 was likely a main-sequence star between 1.2 and 6 M⊙ and was captured into a highly eccentric orbit with pericentre distance in the range of 1–10 au and semimajor axis about 103 au. We then explore the fate of the captured star. We find that the heat deposited by tidally excited stellar oscillation modes leads to runaway disruption if the pericentre distance is smaller than about $3\rm \, au$. Over the past 5 Myr, its angular momentum has been significantly modified by orbital relaxation, which may stochastically drive the pericentre inwards below $3\rm \, au$ and cause tidal disruption. We find an overall survival probability in the range 5 per cent to 50 per cent, depending on the local relaxation time in the close environment of the captured star, and the initial pericentre at capture. The pericentre distance of the surviving star has migrated to 10–100 au, making it potentially the most extreme member of the S-star cluster. From the ejection rate ofmore »S5-HVS1-like stars, we estimate that there may currently be a few stars in such highly eccentric orbits. They should be detectable (typically $K_{\rm s}\lesssim 18.5\,$ mag) by the GRAVITY instrument and by future Extremely Large Telescopes and hence provide an extraordinary probe of the spin of SgrA*.« less

    We analyse how drag forces modify the orbits of objects moving through extended gaseous distributions. We consider how hydrodynamic (surface area) drag forces and dynamical friction (gravitational) drag forces drive the evolution of orbital eccentricity. While hydrodynamic drag forces cause eccentric orbits to become more circular, dynamical friction drag can cause orbits to become more eccentric. We develop a semi-analytic model that accurately predicts these changes by comparing the total work and torque applied to the orbit at periapse and apoapse. We use a toy model of a radial power-law density profile, ρ ∝ r−γ, to determine that there is a critical γ = 3 power index, which separates the eccentricity evolution in dynamical friction: orbits become more eccentric for γ < 3 and circularize for γ > 3. We apply these findings to the infall of a Jupiter-like planet into the envelope of its host star. The hydrostatic envelopes of stars are defined by steep density gradients near the limb and shallower gradients in the interior. Under the influence of gaseous dynamical friction, an infalling object’s orbit will first decrease in eccentricity and then increase. The critical separation that delineates these regimes is predicted by the local density slope and ismore »linearly dependent on polytropic index. More broadly, our findings indicate that binary systems may routinely emerge from common envelope phases with non-zero eccentricities that were excited by the dynamical friction forces that drove their orbital tightening.

    « less

    Tidal evolution of eccentric binary systems containing at least one massive main-sequence (MS) star plays an important role in the formation scenarios of merging compact-object binaries. The dominant dissipation mechanism in such systems involves tidal excitation of outgoing internal gravity waves at the convective-radiative boundary and dissipation of the waves at the stellar envelope/surface. We have derived analytical expressions for the tidal torque and tidal energy transfer rate in such binaries for arbitrary orbital eccentricities and stellar rotation rates. These expressions can be used to study the spin and orbital evolution of eccentric binaries containing massive MS stars, such as the progenitors of merging neutron star binaries. Applying our results to the PSR J0045-7319 system, which has a massive B-star companion and an observed, rapidly decaying orbit, we find that for the standard radius of convective core based on non-rotating stellar models, the B-star must have a significant retrograde and differential rotation in order to explain the observed orbital decay rate. Alternatively, we suggest that the convective core may be larger as a result of rapid stellar rotation and/or mass transfer to the B-star in the recent past during the post-MS evolution of the pulsar progenitor.


    We analyse two binary systems containing giant stars, V723 Mon (‘the Unicorn’) and 2M04123153+6738486 (‘the Giraffe’). Both giants orbit more massive but less luminous companions, previously proposed to be mass-gap black holes. Spectral disentangling reveals luminous companions with star-like spectra in both systems. Joint modelling of the spectra, light curves, and spectral energy distributions robustly constrains the masses, temperatures, and radii of both components: the primaries are luminous, cool giants ($T_{\rm eff,\, giant} = 3800$ and $4000\, \rm K$, $R_{\rm giant}= 22.5$ and $25\, {\rm R}_{\odot }$) with exceptionally low masses ($M_{\rm giant} \approx 0.4\, {\rm M}_{\odot }$) that likely fill their Roche lobes. The secondaries are only slightly warmer subgiants ($T_{\rm eff,\, 2} = 5800$ and $5150\, \rm K$, $R_2= 8.3$ and $9\, {\rm R}_{\odot }$) and thus are consistent with observed UV limits that would rule out main-sequence stars with similar masses ($M_2 \approx 2.8$ and ${\approx}1.8\, {\rm M}_{\odot }$). In the Unicorn, rapid rotation blurs the spectral lines of the subgiant, making it challenging to detect even at wavelengths where it dominates the total light. Both giants have surface abundances indicative of CNO processing and subsequent envelope stripping. The properties of both systems can be reproducedmore »by binary evolution models in which a $1{-}2\, {\rm M}_{\odot }$ primary is stripped by a companion as it ascends the giant branch. The fact that the companions are also evolved implies either that the initial mass ratio was very near unity, or that the companions are temporarily inflated due to rapid accretion. The Unicorn and Giraffe offer a window into into a rarely observed phase of binary evolution preceding the formation of wide-orbit helium white dwarfs, and eventually, compact binaries containing two helium white dwarfs.

    « less

    The Milky Way Galaxy hosts a four million solar mass black hole, Sgr A*, that underwent a major accretion episode approximately 3–6 Myr ago. During the episode, hundreds of young massive stars formed in a disc orbiting Sgr A* in the central half parsec. The recent discovery of a hypervelocity star (HVS) S5-HVS1, ejected by Sgr A* five Myr ago with a velocity vector consistent with the disc, suggests that this event also produced binary star disruptions. The initial stellar disc has to be rather eccentric for this to occur. Such eccentric discs can form from the tidal disruptions of molecular clouds. Here, we perform simulations of such disruptions, focusing on gas clouds on rather radial initial orbits. As a result, stars formed in our simulations are on very eccentric orbits ($\bar{e}\sim 0.6$) with a lopsided configuration. For some clouds, counterrotating stars are formed. As in previous work, we find that such discs undergo a secular gravitational instability that leads to a moderate number of particles obtaining eccentricities of 0.99 or greater, sufficient for stellar binary disruption. We also reproduce the mean eccentricity of the young disc in the Galactic Centre, though not the observed surface density profile. We discussmore »missing physics and observational biases that may explain this discrepancy. We conclude that observed S-stars, HVSs, and disc stars tightly constrain the initial cloud parameters, indicating a cloud mass between a few × 104 and $10^5\, {\rm M}_{\odot }$, and a velocity between ∼40 and 80 km s−1 at 10 pc.

    « less