skip to main content


Search for: All records

Award ID contains: 1909203

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The evolution of many close binary and multiple star systems is defined by phases of mass exchange and interaction. As these systems evolve into contact, tidal dissipation is not always sufficient to bring them into circular, synchronous orbits. In these cases, encounters of increasing strength occur while the orbit remains eccentric. This paper focuses on the outcomes of close tidal passages in eccentric orbits. Close eccentric passages excite dynamical oscillations about the stars’ equilibrium configurations. These tidal oscillations arise from the transfer of orbital energy into oscillation mode energy. When these oscillations reach sufficient amplitude, they break near the stellar surface. The surface wave-breaking layer forms a shock-heated atmosphere that surrounds the object. The continuing oscillations in the star’s interior launch shocks that dissipate into the atmosphere, damping the tidal oscillations. We show that the rapid, nonlinear dissipation associated with the wave breaking of fundamental oscillation modes therefore comes with coupled mass loss to the wave-breaking atmosphere. The mass ratio is an important characteristic that defines the relative importance of mass loss and energy dissipation and therefore determines the fate of systems evolving under the influence of nonlinear dissipation. The outcome can be rapid tidal circularization (q≪ 1) or runaway mass exchange (q≫ 1).

     
    more » « less
  2. ABSTRACT

    We analyse how drag forces modify the orbits of objects moving through extended gaseous distributions. We consider how hydrodynamic (surface area) drag forces and dynamical friction (gravitational) drag forces drive the evolution of orbital eccentricity. While hydrodynamic drag forces cause eccentric orbits to become more circular, dynamical friction drag can cause orbits to become more eccentric. We develop a semi-analytic model that accurately predicts these changes by comparing the total work and torque applied to the orbit at periapse and apoapse. We use a toy model of a radial power-law density profile, ρ ∝ r−γ, to determine that there is a critical γ = 3 power index, which separates the eccentricity evolution in dynamical friction: orbits become more eccentric for γ < 3 and circularize for γ > 3. We apply these findings to the infall of a Jupiter-like planet into the envelope of its host star. The hydrostatic envelopes of stars are defined by steep density gradients near the limb and shallower gradients in the interior. Under the influence of gaseous dynamical friction, an infalling object’s orbit will first decrease in eccentricity and then increase. The critical separation that delineates these regimes is predicted by the local density slope and is linearly dependent on polytropic index. More broadly, our findings indicate that binary systems may routinely emerge from common envelope phases with non-zero eccentricities that were excited by the dynamical friction forces that drove their orbital tightening.

     
    more » « less
  3. Abstract

    Atmospheric escape from close-in exoplanets is thought to be crucial in shaping observed planetary populations. Recently, significant progress has been made in observing this process in action through excess absorption in-transit spectra and narrowband light curves. We model the escape of initially homogeneous planetary winds interacting with a stellar wind. The ram pressure balance of the two winds governs this interaction. When the impingement of the stellar wind on the planetary outflow is mild or moderate, the planetary outflow expands nearly spherically through its sonic surface before forming a shocked boundary layer. When the confinement is strong, the planetary outflow is redirected into a cometary tail before it expands to its sonic radius. The resultant transmission spectra at the He 1083 nm line are accurately represented by a 1D spherical wind solution in cases of mild to moderate stellar wind interaction. In cases of strong stellar wind interaction, the degree of absorption is enhanced and the cometary tail leads to an extended egress from transit. The crucial features of the wind–wind interaction are, therefore, encapsulated in the light curve of He 1083 nm equivalent width as a function of time. The possibility of extended He 1083 nm absorption well beyond the optical transit carries important implications for planning out-of-transit observations that serve as a baseline for in-transit data.

     
    more » « less
  4. Abstract We present the detection of neutral helium at 10833 Å in the atmosphere of WASP-52b and tentative evidence of helium in the atmosphere of the grazing WASP-177b, using high-resolution observations acquired with the NIRSPEC instrument on the Keck II telescope. We detect excess absorption by helium in WASP-52b’s atmosphere of 3.44% ± 0.31% (11 σ ), or equivalently 66 ± 5 atmospheric scale heights. This absorption is centered on the planet’s rest frame (Δ v = 0.00 ± 1.19 km s −1 ). We model the planet’s escape using a 1D Parker wind model and calculate its mass-loss rate to be ∼1.4 × 10 11 g s −1 , or equivalently 0.5% of its mass per gigayear. For WASP-177b, we see evidence for redshifted (Δ v = 6.02 ± 1.88 km s −1 ) helium-like absorption of 1.28% ± 0.29% (equal to 23 ± 5 atmospheric scale heights). However, due to residual systematics in the transmission spectrum of similar amplitude, we do not interpret this as significant evidence for He absorption in the planet’s atmosphere. Using a 1D Parker wind model, we set a 3 σ upper limit on WASP-177b’s escape rate of 7.9 × 10 10 g s −1 . Our results, taken together with recent literature detections, suggest the tentative relation between XUV irradiation and He i absorption amplitude may be shallower than previously suggested. Our results highlight how metastable helium can advance our understanding of atmospheric loss and its role in shaping the exoplanet population. 
    more » « less
  5. We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries enter into a common envelope phase or merger, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of Luminous Red Novae (LRNe) to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead in to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that approximately half of stellar merger and common envelope transients for solar-mass stars will be dusty, infrared-luminous sources. The dusty, infrared transients will selectively trace the population of systems that may successfully eject their common envelopes, while the unobscured, optical transients correspond to the LRNe population of stellar mergers. 
    more » « less
  6. The detection of the binary black hole merger GW190521, with primary mass 85+21−14 M⊙ , proved the existence of black holes in the theoretically predicted pair-instability gap ( ∼60−120M⊙ ) of their mass spectrum. Some recent studies suggest that such massive black holes could be produced by the collision of an evolved star with a carbon-oxygen core and a main sequence star. Such a post-coalescence star could end its life avoiding the pair-instability regime and with a direct collapse of its very massive envelope. It is still not clear, however, how the collision shapes the structure of the newly produced star and how much mass is actually lost in the impact. We investigated this issue by means of hydrodynamical simulations with the smoothed particle hydrodynamics code StarSmasher, finding that a head-on collision can remove up to 12% of the initial mass of the colliding stars. This is a non-negligible percentage of the initial mass and could affect the further evolution of the stellar remnant, particularly in terms of the final mass of a possibly forming black hole. We also found that the main sequence star can plunge down to the outer boundary of the carbon-oxygen core of the primary, changing the inner chemical composition of the remnant. The collision expels the outer layers of the primary, leaving a remnant with an helium-enriched envelope (reaching He fractions of about 0.4 at the surface). These more complex abundance profiles can be directly used in stellar evolution simulations of the collision product. 
    more » « less
  7. The engulfment of substellar bodies (SBs) such as brown dwarfs and planets has been invoked as a possible explanation for the presence of SBs orbiting subdwarfs and white dwarfs, rapidly rotating giants, and lithium-rich giants. We perform three-dimensional hydrodynamical simulations of the flow in the vicinity of an SB engulfed in a stellar envelope. We model the SB as a rigid body with a reflective boundary because it cannot accrete. This reflective boundary changes the flow morphology to resemble that of engulfed compact objects with outflows. We measure the drag coefficients for the ram pressure and gravitational drag forces acting on the SB, and use them to integrate its trajectory during engulfment. We find that SB engulfment can increase the stellar luminosity of a 1M⊙ star by up to a few orders of magnitude for timescales of up to a few thousand years when the star is ≈10R⊙ and up to a few decades at the tip of the red giant branch. We find that no SBs can eject the envelope of a 1M⊙ star before it evolves to ≈10R⊙ . In contrast, SBs as small as ≈10MJup can eject the envelope at the tip of the red giant branch, shrinking their orbits by several orders of magnitude in the process. The numerical framework we introduce here can be used to study the dynamics of planetary engulfment in a simplified setting that captures the physics of the flow at the scale of the SB. 
    more » « less
  8. Abstract Planetary engulfment events have long been proposed as a lithium (Li) enrichment mechanism contributing to the population of Li-rich giants ( A (Li) ≥ 1.5 dex). Using MESA stellar models and A (Li) abundance measurements obtained by the GALAH survey, we calculate the strength and observability of the surface Li enrichment signature produced by the engulfment of a hot Jupiter (HJ). We consider solar-metallicity stars in the mass range of 1–2 M ⊙ and the Li supplied by a HJ of 1.0 M J . We explore engulfment events that occur near the main-sequence turn-off (MSTO) and out to orbital separations of R ⋆ ∼ 0.1 au = 22 R ⊙ . We map our results onto the Hertzsprung–Russell Diagram, revealing the statistical significance and survival time of Li enrichment. We identify the parameter space of masses and evolutionary phases where the engulfment of a HJ can lead to Li enrichment signatures at a 5 σ confidence level and with meteoritic abundance strengths. The most compelling strengths and survival times of engulfment-derived Li enrichment are found among host stars of 1.4 M ⊙ near the MSTO. Our calculations indicate that planetary engulfment is not a viable enrichment pathway for stars that have evolved beyond the subgiant branch. For these sources, observed Li enhancements are likely to be produced by other mechanisms, such as the Cameron–Fowler process or the accretion of material from an asymptotic giant branch companion. Our results do not account for second-order effects, such as extra mixing processes, which can further dilute Li enrichment signatures. 
    more » « less
  9. Interacting binaries are of general interest as laboratories for investigating the physics of accretion, which gives rise to the bulk of high-energy radiation in the Galaxy. They allow us to probe stellar evolution processes that cannot be studied in single stars. Understanding the orbital evolution of binaries is essential in order to model the formation of compact binaries. Here we focus our attention on studying orbital evolution driven by angular momentum loss through stellar winds in massive binaries. We run a suite of hydrodynamical simulations of binary stars hosting one mass losing star with varying wind velocity, mass ratio, wind velocity profile and adiabatic index, and compare our results to analytic estimates for drag and angular momentum loss. We find that, at leading order, orbital evolution is determined by the wind velocity and the binary mass ratio. Small ratios of wind to orbital velocities and large accreting companion masses result in high angular momentum loss and a shrinking of the orbit. For wider binaries and binaries hosting lighter mass-capturing companions, the wind mass-loss becomes more symmetric, which results in a widening of the orbit. We present a simple analytic formula that can accurately account for angular momentum losses and changes in the orbit, which depends on the wind velocity and mass ratio. As an example of our formalism, we compare the effects of tides and winds in driving the orbital evolution of high mass X-ray binaries, focusing on Vela X-1 and Cygnus X-1 as examples. 
    more » « less
  10. ABSTRACT Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $10\, {\rm M}_{\odot }$ ($15\, {\rm M}_{\odot }$) primary star interacting with a $1.4\, {\rm M}_{\odot }$ companion, systems with pericentre distances within 3 au (6 au) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common-envelope eccentricity on the resulting compact binary merit further study. 
    more » « less