Abstract Wavefront sensing is the simultaneous measurement of the amplitude and phase of an incoming optical field. Traditional wavefront sensors such as Shack-Hartmann wavefront sensor (SHWFS) suffer from a fundamental tradeoff between spatial resolution and phase estimation and consequently can only achieve a resolution of a few thousand pixels. To break this tradeoff, we present a novel computational-imaging-based technique, namely, the Wavefront Imaging Sensor with High resolution (WISH). We replace the microlens array in SHWFS with a spatial light modulator (SLM) and use a computational phase-retrieval algorithm to recover the incident wavefront. This wavefront sensor can measure highly varying optical fields at more than 10-megapixel resolution with the fine phase estimation. To the best of our knowledge, this resolution is an order of magnitude higher than the current noninterferometric wavefront sensors. To demonstrate the capability of WISH, we present three applications, which cover a wide range of spatial scales. First, we produce the diffraction-limited reconstruction for long-distance imaging by combining WISH with a large-aperture, low-quality Fresnel lens. Second, we show the recovery of high-resolution images of objects that are obscured by scattering. Third, we show that WISH can be used as a microscope without an objective lens. Our study suggests that the designing principle of WISH, which combines optical modulators and computational algorithms to sense high-resolution optical fields, enables improved capabilities in many existing applications while revealing entirely new, hitherto unexplored application areas.
more »
« less
High-Dynamic Range, High-Resolution Freeform Metrology with Optical Differentiation Wavefront Sensing
Wavefront generated by freeform phase plate is measured with an optical differentiation wavefront sensor. Comparison of the measurement with a commercial scanning interferometer shows M0 (A=633 nm) agreement, demonstrating its potential for metrology applications.
more »
« less
- Award ID(s):
- 1711669
- PAR ID:
- 10358885
- Date Published:
- Journal Name:
- Imaging and Applied Optics Congress, OSA Technical Digest (Optical Society of America, 2020)
- Page Range / eLocation ID:
- OF4B.6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-precision light manipulation is crucial for delivering information through complex media. However, existing spatial light modulation devices face a fundamental speed-fidelity tradeoff. Digital micromirror devices have emerged as a promising candidate for high-speed wavefront shaping but at the cost of compromised fidelity due to the limited control degrees of freedom. Here, we leverage the sparse-to-random transformation through complex media to overcome the dimensionality limitation of spatial light modulation devices. We demonstrate that pattern compression by sparsity-constrained wavefront optimization allows sparse and robust wavefront representations in complex media, improving the projection fidelity without sacrificing frame rate, hardware complexity, or optimization time. Our method is generalizable to different pattern types and complex media, supporting consistent performance with up to 89% and 126% improvements in projection accuracy and speckle suppression, respectively. The proposed optimization framework could enable high-fidelity high-speed wavefront shaping through different scattering media and platforms without changes to the existing holographic setups, facilitating a wide range of physics and real-world applications.more » « less
-
Active mode mismatch sensing and control can facilitate optimal coupling in optical cavity experiments such as interferometric gravitational wave detectors. In this paper, we demonstrate a radio-frequency (RF) beam wavefront curvature modulation-based mode mismatch sensing scheme inspired by the previously proposed RF beam jitter alignment sensing scheme. The proposed mode mismatch sensing scheme uses an electro-optic lens (EOL) device that is designed to provide the required beam wavefront curvature actuation, as well as a mode converting telescope that rephases the RF second-order modes and generates a non-vanishing mode mismatch sensing signal. We carefully investigate the total second-order mode generation from the wavefront actuation both analytically and numerically, taking the effects of Gaussian beam size evolution and the second-order mode phase mismatch cancellation into consideration. We demonstrate the second-order mode generation as a function of the incident beam waist size and the electro-optic crystal size which, along with a “trade-off” consideration of the beam size at the edges of the crystal and the clipping loss, provides us with guidance for designing the beam profile that interacts with the crystal to improve the EOL modulation efficiency.more » « less
-
Conduction velocity (CV) slowing is associated with atrial fibrillation (AF) and reentrant ventricular tachycardia (VT). Clinical electroanatomical mapping systems used to localize AF or VT sources as ablation targets remain limited by the number of measuring electrodes and signal processing methods to generate high-density local activation time (LAT) and CV maps of heterogeneous atrial or trabeculated ventricular endocardium. The morphology and amplitude of bipolar electrograms depend on the direction of propagating electrical wavefront, making identification of low-amplitude signal sources commonly associated with fibrotic area difficulty. In comparison, unipolar electrograms are not sensitive to wavefront direction, but measurements are susceptible to distal activity. This study proposes a method for local CV calculation from optical mapping measurements, termed the circle method (CM). The local CV is obtained as a weighted sum of CV values calculated along different chords spanning a circle of predefined radius centered at a CV measurement location. As a distinct maximum in LAT differences is along the chord normal to the propagating wavefront, the method is adaptive to the propagating wavefront direction changes, suitable for electrical conductivity characterization of heterogeneous myocardium. In numerical simulations, CM was validated characterizing modeled ablated areas as zones of distinct CV slowing. Experimentally, CM was used to characterize lesions created by radiofrequency ablation (RFA) on isolated hearts of rats, guinea pig, and explanted human hearts. To infer the depth of RFA-created lesions, excitation light bands of different penetration depths were used, and a beat-to-beat CV difference analysis was performed to identify CV alternans. Despite being limited to laboratory research, studies based on CM with optical mapping may lead to new translational insights into better-guided ablation therapies.more » « less
-
Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)MAPS, MMT Adaptive optics exoPlanet characterization System, is the upgrade of the adaptive optics system for 6.5-m MMT. It is an NSF MSIP-funded project that includes developing an adaptive-secondary mirror, visible and near-infrared pyramid wavefront sensors, and the upgrade of Arizona infrared imager and echelle spectrograph (ARIES) and MMT High Precision Imaging Polarimeter (MMTPol) science cameras. This paper will present the design and development of the visible pyramid wavefront sensor, VPWFS. It consists of an acquisition camera, a fast-steering tip-tilt modulation mirror, a pyramid, a pupil imaging triplet lens, and a low noise and high-speed frame rate based CCID75 camera. We will report on hardware and software, present the laboratory characterization results of individual subsystems, and outline the on-sky commissioning plan.more » « less
An official website of the United States government

