skip to main content


Title: In situ lipid profiling of insect pheromone glands by direct analysis in real time mass spectrometry
Lipid pheromones play a significant role in the behavior and ecology of many insects. The characterization of pheromone structures is a significant challenge due to their low abundance and ephemeral nature. Here we present a method for the analysis of lipid molecules from single pheromone glands of Drosophila melanogaster (fruit fly) using Direct Analysis in Real Time mass spectrometry (DART MS). Our results reveal that DART MS analysis of single tissues generates reproducible, species-specific lipid profiles comprised of fatty acids, wax esters, diacylglycerides and triacylglycerides. In addition, the ion source temperature and application of a solvent wash can cause significant qualitative and quantitative changes in the mass spectral profile. Lastly, we show that untargeted chemical fingerprinting of the gland can be used to accurately categorize species according to phylogenetic subgroup or genotype. Collectively, our findings indicate that DART MS is a rapid and powerful method for characterizing a broad range of lipids in tissues with minimal preparation. The application of direct tissue DART MS will expand the “secretome” of molecules produced by pheromone glands. In addition to its direct relevance to chemical ecology, the method could potentially be used in pharmaceutical studies for the screening and detection of tissue-specific drug metabolites.  more » « less
Award ID(s):
2025669
NSF-PAR ID:
10359096
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Analyst
Volume:
147
Issue:
14
ISSN:
0003-2654
Page Range / eLocation ID:
3276 to 3284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The fall armyworm (FAW),Spodoptera frugiperda(J.E. Smith), is a global pest that feeds on >350 plant species and severely limits production of cultivated grasses, vegetable crops and cotton. An efficient way to detect new invasions at early stages, and monitor and quantify the status of established infestations of this pest is to deploy traps baited with species‐specific synthetic sex pheromone lures.

    Results

    We re‐examined the compounds in the sex pheromone glands of FAW females by gas chromatography‐electroantennogram detector (GC‐EAD), GC–mass spectrometry (MS), behavioral and field assays. A new bioactive compound from pheromone gland extracts was detected in low amounts (3.0% relative to (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc), the main pheromone component), and identified as nonanal. This aldehyde significantly increased attraction of male moths to a mix of Z9‐14:OAc and (Z)‐7‐dodecenyl acetate in olfactometer assays. Adding nonanal to this two‐component mix also doubled male trap catches relative to the two‐component mix alone in cotton fields, whereas nonanal alone did not attract any moths. The addition of nonanal to each of three commercial pheromone lures also increased male catches by 53–135% in sorghum and cotton fields.

    Conclusion

    The addition of nonanal to pheromone lures should improve surveillance, monitoring and control of FAW populations. © 2023 The Authors.Pest Management Sciencepublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

     
    more » « less
  2. Elucidation of complex molecular networks requires integrative analysis of molecular features and changes at different levels of information flow and regulation. Accordingly, high throughput functional genomics tools such as transcriptomics, proteomics, metabolomics, and lipidomics have emerged to provide system-wide investigations. Unfortunately, analysis of different types of biomolecules requires specific sample extraction procedures in combination with specific analytical instrumentation. The most efficient extraction protocols often only cover a restricted type of biomolecules due to their different physicochemical properties. Therefore, several sets/aliquots of samples are needed for extracting different molecules. Here we adapted a biphasic fractionation method to extract proteins, metabolites, and lipids from the same sample (3-in-1) for liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-omics. To demonstrate utility of the improved method, we used bacteria-primed Arabidopsis leaves to generate multi-omics datasets from the same sample. In total, we were able to analyze 1849 proteins, 1967 metabolites, and 424 lipid species in single samples. The molecules cover a wide range of biological and molecular processes, and allow quantitative analyses of different molecules and pathways. Our results have shown the clear advantages of the multi-omics method, including sample conservation, high reproducibility, and tight correlation between different types of biomolecules. 
    more » « less
  3. The application of direct analysis in real-time mass spectrometry (DART-MS), which is finding increasing use in atmospheric chemistry, to two different laboratory model systems for airborne particles is investigated: (1) submicron C3–C7 dicarboxylic acid (diacid) particles reacted with gas-phase trimethylamine (TMA) or butylamine (BA) and (2) secondary organic aerosol (SOA) particles from the ozonolysis of α-cedrene. The diacid particles exhibit a clear odd–even pattern in their chemical reactivity toward TMA and BA, with the odd-carbon diacid particles being substantially more reactive than even ones. The ratio of base to diacid in reacted particles, determined using known diacid–base mixtures, was compared to that measured by high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), which vaporizes the whole particle. Results show that DART-MS probes  ∼  30 nm of the surface layer, consistent with other studies on different systems. For α-cedrene SOA particles, it is shown that varying the temperature of the particle stream as it enters the DART-MS ionization region can distinguish between specific components with the same molecular mass but different vapor pressures. These results demonstrate the utility of DART-MS for (1) examining reactivity of heterogeneous model systems for atmospheric particles and (2) probing components of SOA particles based on volatility. 
    more » « less
  4. Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant post-transcriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases and the resulting single-stranded RNA products are subject to LC-MS/MS analysis. The application of LC-MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence S. cerevisiae tRNAs with up to 97% sequence coverage for individual tRNA species by LC-MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs. 
    more » « less
  5. Summary

    Analysis of wood transects in a manner that preserves the spatial distribution of the metabolites present is highly desirable to among other things: (1) facilitate ecophysiology studies that reveal the association between chemical make‐up and environmental factors or climatic events over time; and (2) investigate the mechanisms of the synthesis and trafficking of small molecules within specialised tissues. While a variety of techniques could be applied to achieve these goals, most remain challenging and impractical.

    Laser ablation direct analysis in real time imaging–mass spectrometry (LADI‐MS) was successfully used to survey the chemical profile of wood, while also preserving the small‐molecule spatial distributions. The tree speciesEntandrophragma candolleiHarms,Millettia laurentiiDeWild.,Pericopsis elata(Harms) Meeuwen,Dalbergia nigra(Vell.) Benth. andDalbergia normandiiBosser & R.Rabev were analysed.

    Several compounds were associated with anatomical features. A greater diversity was detected in the vessels and parenchyma compared with the fibres. Analysis of single vessels revealed that the chemical fingerprint used for timber identification is mainly determined by vessel content.

    Laser ablation direct analysis in real time imaging–mass spectrometry offers unprecedented opportunities to investigate the distribution of metabolites within wood samples, while circumventing the issues associated with previous methods. This technique opens up new vistas for the discovery of small‐molecule biomarkers that are linked to environmental events.

     
    more » « less