skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid Screening and Quantification of PFAS Enabled by SPME-DART-MS
Per- and polyfluoroalkyl substances (PFAS), an emerging class of toxic anthropogenic chemicals persistent in the environment, are currently regulated at the low part-per-trillion level worldwide in drinking water. Quantification and screening of these compounds currently rely primarily on liquid chromatography hyphenated to mass spectrometry (LC-MS). The growing need for quicker and more robust analysis in routine monitoring has been, in many ways, spearheaded by the advent of direct ambient mass spectrometry (AMS) technologies. Direct analysis in real time (DART), a plasma-based ambient ionization technique that permits rapid automated analysis, effectively ionizes a broad range of compounds, including PFAS. This work evaluates the performance of DART-MS for the screening and quantification of PFAS of different chemical classes, employing a central composite design (CCD) to better understand the interactions of DART parameters on their ionization. Furthermore, in-source fragmentation of the model PFAS was investigated based on the DART parameters evaluated. Preconcentration of PFAS from water samples was achieved by solid phase microextraction (SPME), and extracts were analyzed using the optimized DART-MS conditions, which allowed obtaining linear dynamic ranges (LDRs) within 10 and 5000 ng/L and LOQs of 10, 25, and 50 ng/L for all analytes. Instrumental analysis was achieved in less than 20 s per sample.  more » « less
Award ID(s):
2144591
PAR ID:
10497136
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Journal of the American Society for Mass Spectrometry
Volume:
34
Issue:
9
ISSN:
1044-0305
Page Range / eLocation ID:
1890 to 1897
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The C–F alkyl structural backbone of per- and polyfluoroalkyl substances makes this class of molecules resistant to heat and degradation, leading to their high persistence and mobility in the environment and bioaccumulation in the tissues of living organisms. In this study, 15 PFAS with an alkyl chain length from C4 to C14, currently monitored by the U.S. Environmental Protection Agency (EPA), were preconcentrated by solid-phase microextraction (SPME) and analyzed by liquid chromatography-tandem mass spectrometry. The adsorption and desorption mechanisms of PFAS onto ion-exchange extraction phases was evaluated to understand the extraction process of PFAS from various environmental matrices under different conditions. This was achieved using two SPME geometries, namely fibers and thin films. The use of thin films resulted in a twofold improvement in extraction efficiency compared to fibers, especially for the short-chain PFAS. Methanol:water (80:20, v/v) was chosen as the optimized desorption solution, with ammonium formate added to minimize carryover. Extraction time profiles for both SPME geometries showed faster equilibration with thin films (30 min) compared to fibers (90–120 min). The linear dynamic range obtained with this method using fibers and thin films ranged from 10 to 5000 ng L􀀀 1 and 2.5–5000 ng L􀀀 1, respectively, with acceptable accuracy (70–130%) and precision (<15%). LOD ranged within 2.5–10 ng L􀀀 1 for fibers and 0.01–0.25 ng L􀀀 1 for thin films. Investigating the factors affecting PFAS recovery in complex samples enabled the quantitative assessment of PFAS contamination in various environmental water samples such as seawater, melted snow and biospecimens like human plasma. A 96-SPME holder was used for validation, which is compatible with sampling in 96-well plates and ensures high throughput in the analysis of real samples. The total concentration of PFAS detected in seawater and snow was 51.3 ng L􀀀 1 and 16.4 ng L􀀀 1, respectively. 
    more » « less
  2. Abstract Land application of treated sewage sludge (also known as biosolids) is considered a sustainable route of disposal because it reduces waste loading into landfills while improving soil health. However, this waste management practice can introduce contaminants from biosolids, such as per- and polyfluoroalkyl substances (PFAS), into the environment. PFAS have been observed to be taken up by plants, accumulate in humans and animals, and have been linked to various negative health effects. There is limited information on the nature and amounts of PFAS introduced from biosolids that have undergone different treatment processes. Therefore, this study developed analytical techniques to improve the characterization of PFAS in complex biosolid samples. Different clean-up techniques were evaluated and applied to waste-activated sludge (WAS) and lime-stabilized primary solids (PS) prior to targeted analysis and suspect screening of biosolid samples. Using liquid chromatography with high-resolution mass spectrometry, a workflow was developed to achieve parallel quantitative targeted analysis and qualitative suspect screening. This study found that concentrations of individual PFAS (27 targeted analytes) can range from 0.6 to 84.6 ng/g in WAS (average total PFAS = 241.4 ng/g) and from 1.6 to 33.8 ng/g in PS (average total PFAS = 72.1 ng/g). The suspect screening workflow identified seven additional PFAS in the biosolid samples, five of which have not been previously reported in environmental samples. Some of the newly identified compounds are a short-chain polyfluorinated carboxylate (a PFOS replacement), a diphosphate ester (a PFOA precursor), a possible transformation product of carboxylate PFAS, and an imidohydrazide which contains a sulfonate and benzene ring. 
    more » « less
  3. Polyfluoroalkyl substances (PFASs) and para-phenylenediamines (PPDs) are emerging classes of anthropogenic contaminants that are environmentally persistent (most often found in ground and surface water sources), bioaccumulative, and harmful to human health. These chemicals are currently regulated in the US by the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the Occupational Safety and Health Administration (OSHA). Analysis of these contaminants is currently spearheaded by mass spectrometry (MS) coupled to liquid chromatography (LC) because of their high sensitivity and separation capabilities. Although effective, a major flaw in LC-MS analysis is its large consumption of solvents and the amount of time required for each experiment. Direct analysis in real time mass spectrometry (DART-MS) is a new technique that offers high sensitivity and permits rapid analysis with little to no sample preparation. Herein, we present the qualitative and quantitative analysis of PFASs and PPDs by high-resolution DART-MS, interfaced with ion mobility (IM) and tandem mass spectrometry (MS/MS) characterization, demonstrating the utility of this multidimensional approach for the fast separation and detection of environmental contaminants. 
    more » « less
  4. In this study, direct analysis in real time mass spectrometry (DART-MS) was coupled to the solid phase microextraction (SPME) to extract and analyze the ignitable liquid residues (ILR) present in the sample matrices. The SPME extraction parameters, such as extraction temperature and extraction time, were optimized using a two factor central composite design. The SPME-DART-MS setup was utilized to analyze the substrates and fire debris matrices spiked with gasoline. The results indicate that the less volatile marker compounds from gasoline were recovered from the substrates and fire debris, and their profiles matched well with the gasoline liquid samples analyzed directly by DART-MS. As expected, the effective extraction of marker compounds in gasoline required a relatively high temperature, i.e., 150 ℃. In the presence of a matrix, a higher extraction temperature and longer extraction time could benefit the extraction efficiency. The desorption of ILR on SPME fiber was performed by inserting the fiber into the DART-MS helium gas stream at 300 ℃ for 1 min with no carry-over residues being observed between successive samples. The chemical information attained with this method is typically not observed in the current GC/MS-based practice. The SPME-DART-MS was also extended to reanalyze less volatile components of ILR on substrates after the ASTM E1412 activated charcoal method, which indicates its possible application subsequent to the traditional GC/MS ILR analysis. The SPME-DART-MS has shown promise in ILR detection as an important complementary tool. 
    more » « less
  5. Accurate quantitation of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is essential for regulatory compliance, forensic investigations, and cannabis product development. Traditional methods, such as liquid chromatography (LC) and gas chromatography (GC) coupled with mass spectrometry, provide reliable results but are time-consuming and resource-intensive. This study introduces a rapid and high-throughput analytical method using zone heat-assisted direct analysis in real time mass spectrometry (DART-MS) combined with in-situ flash derivatization. The method employs trimethylphenylammonium hydroxide (TMPAH) for efficient derivatization, allowing for the differentiation of THC, CBD, and their acidic precursors, Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). A custom heated transfer zone was implemented to enhance derivatization efficiency and reduce carryover effects. The method was optimized for reagent concentration and gas stream temperature, achieving high specificity by minimizing interference from isomeric cannabinoids. Validation studies demonstrate good accuracy (relative error within ±15.9 %) and precision (relative standard deviation ≤15 %), with limits of quantitation of 7.5 µg/mL for THC/CBD and 0.5 µg/mL for THCA/CBDA. Comparative analysis of cannabis samples showed a strong correlation with reference LC/MS results, highlighting the reliability of the proposed method. DART-MS offers a significant time advantage, requiring only 10 s per analysis, making it a promising tool for high-throughput screening of cannabis samples in forensic laboratories. 
    more » « less