A hybrid structural stress method is presented for significantly simplifying spot weld representations in fatigue evaluation of complex spot-welded structures while retaining a high degree of accuracy in structural stress computation. The method is formulated by extracting nodal forces and moments around a group of domain elements connected to a spot weld represented by a regular beam element. Through a systematic decomposition technique, existing closed-form solutions, previously only valid for modeling single-spot weld test specimens, can now be used for calculating the relevant structural stresses under complex loading conditions in structures, as validated its ability in correlating fatigue test data.
more »
« less
Fracture Mechanics Modeling of Fatigue Behaviors of Adhesive-Bonded Aluminum Alloy Components
Adhesive-bonding has become increasingly adopted for multi-material lightweight applications (e.g., automotive structures). There is a growing interest in understanding the fatigue behaviors in this type of joint for supporting structural durability modeling in practice. In this paper, an analytical fracture mechanics modeling procedure is presented in the context of a generalized sandwich specimen. Its closed form stress intensity factor solutions were then derived and applied for the correlating fatigue test data obtained from the lap-shear and coach-peel test specimens with demonstrated effectiveness. Some important implications of these analytical solutions on joint design are also discussed.
more »
« less
- Award ID(s):
- 2126163
- PAR ID:
- 10359208
- Date Published:
- Journal Name:
- Metals
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2075-4701
- Page Range / eLocation ID:
- 1298
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionCompartment based models of muscle fatigue have been particularly successful in accurately modeling isometric (static) tasks or actions. However, dynamic actions, which make up most everyday movements, are governed by different central and peripheral processes, and must therefore be modeled in a manner accounting for the differences in the responsible mechanisms. In the literature, a three-component controller (3CC) muscle fatigue model (MFM) has been proposed and validated for static tasks. A recent study reported a four-compartment muscle fatigue model considering both short- and long-term fatigued states. However, neither has been validated for both static and dynamic tasks. MethodsIn this work we proposed a new four-compartment controller model of muscle fatigue with enhanced recovery (4CCr) that allows the modeling of central and peripheral fatigue separately and estimates strength decline for static and dynamic tasks. Joint velocity was used as an indicator of the degree of contribution of either mechanism. Model parameters were estimated from part of the experimental data and finally, the model was validated through the rest of experimental data that were not used for parameter estimation. ResultsThe 3CC model cannot capture the fatigue phenomenon that the velocity of contraction would affect isometric strength measurements as shown in experimental data. The new 4CCr model maintains the predictions of the extensively validated 3CC model for static tasks but provides divergent predictions for isokinetic activities (increasing fatigue with increasing velocity) in line with experimentally observed trends. This new 4CCr model can be extended to various domains such as individual muscle fatigue, motor units’ fatigue, and joint-based fatigue.more » « less
-
Abstract This paper predicts the optimal motion for a repetitive lifting task considering muscle fatigue. The Denavit–Hartenberg (DH) representation is employed to characterize the two-dimensional (2D) digital human model with 10 degrees-of-freedom (DOFs). Two joint-based muscle fatigue models, i.e., a three-compartment controller (3CC) muscle fatigue model (validated for isometric tasks) and a four-compartment controller with augmented recovery (4CCr) muscle fatigue model (validated for dynamic tasks), are utilized to account for the fatigue effect due to the repetitive motion. The lifting problem is formulated mathematically as an optimization problem, with the objective of minimizing dynamic effort and joint acceleration subjected to both physical and task-specific constraints. The design variables include joint angle profiles, discretized by quartic B-splines, and the control points of the profiles of the fatigue compartments associated with major body joints (spinal, shoulder, elbow, hip, and knee joints). The outcomes of the simulation encompass profiles of joint angles, joint torques, and the advancement of joint fatigue. It is notable that the profiles of joint angles and torques exhibit distinct periodic patterns. Numerical simulations and experiments with a 20 kg box reveal that the maximum predicted lifting cycles are 11 for the 3CC fatigue model and 13 for the 4CCr fatigue model while the experimental result is 13 cycles. The results indicate that the 4CCr muscle fatigue model provides enhanced accuracy over the 3CC model for predicting task duration (number of cycles) of repetitive lifting.more » « less
-
Understanding the fatigue behavior and accurately predicting the fatigue life of laser powder bed fusion (L-PBF) parts remain a pressing challenge due to complex failure mechanisms, time-consuming tests, and limited fatigue data. This study proposes a physics-informed data-driven framework, a multimodal transfer learning (MMTL) framework, to understand process-defect-fatigue relationships in L-PBF by integrating various modalities of fatigue performance, including process parameters, XCT-inspected defects, and fatigue test conditions. It aims to leverage a pre-trained model with abundant process and defect data in the source task to predict fatigue life nondestructive with limited fatigue test data in the target task. MMTL employs a hierarchical graph convolutional network (HGCN) to classify defects in the source task by representing process parameters and defect features in graphs, thereby enhancing its interpretability. The feature embedding learned from HGCN is then transferred to fatigue life modeling in neural network layers, enabling fatigue life prediction for L-PBF parts with limited data. MMTL validation through a numerical simulation and real-case study demonstrates its effectiveness, achieving an F1-score of 0.9593 in defect classification and a mean absolute percentage log error of 0.0425 in fatigue life prediction. MMTL can be extended to other applications with multiple modalities and limited data.more » « less
-
Abstract Bistable composite laminates have exhibited enormous potential in morphing and energy harvesting followed by a wide range of application in aerospace, power generation and automobile industries. This study presents the fatigue analysis of bistable laminates in terms of stiffness degradation and loss of bistability. Moisture saturation of the specimens are ensured by keeping them in a controlled laboratory environment for an extended period of time. Mass of the specimens have been measured to quantify the moisture saturation. Fatigue tests are performed at 1 Hz frequency, and R = −1 stress ratio which is the ratio of minimum stress to maximum stress. Specimens are tested for 3 million cycles in displacement control. Load-displacement plot from the test is divided into 5 stiffness regions. A piecewise study of each region has demonstrated good agreement with existing analytical model. Stiffness degradation in 4 regions corresponding to 2 stable configurations follows general trend for composites up to the second stage of damage in three stage damage progression model while the remaining region corresponding to unstable configuration is not considered in this analysis. Test results have been reproduced with minor discrepancy at the specified environmental and loading condition, ply configuration, and size of the laminate. Test protocols, results, and damage analysis presented in this study can be utilized to evaluate the fatigue performance of multistable CFRP structures subjected to higher amplitudes and frequencies.more » « less
An official website of the United States government

