skip to main content


Title: On the choice of finite element for applications in geodynamics
Abstract. Geodynamical simulations over the past decades have widely beenbuilt on quadrilateral and hexahedral finite elements. For thediscretization of the key Stokes equation describing slow, viscousflow, most codes use either the unstable Q1×P0 element, astabilized version of the equal-order Q1×Q1 element, ormore recently the stable Taylor–Hood element with continuous(Q2×Q1) or discontinuous (Q2×P-1)pressure. However, it is not clear which of these choices isactually the best at accurately simulating “typical” geodynamicsituations. Herein, we provide a systematic comparison of all of theseelements for the first time. We use a series of benchmarks that illuminate differentaspects of the features we consider typical of mantle convectionand geodynamical simulations. We will show in particular that the stabilizedQ1×Q1 element has great difficulty producing accuratesolutions for buoyancy-driven flows – the dominant forcing formantle convection flow – and that the Q1×P0 element istoo unstable and inaccurate in practice. As a consequence, webelieve that the Q2×Q1 and Q2×P-1 elementsprovide the most robust and reliable choice for geodynamical simulations,despite the greater complexity in their implementation and thesubstantially higher computational cost when solving linearsystems.  more » « less
Award ID(s):
1925595 1821210 1835673
NSF-PAR ID:
10359238
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Solid Earth
Volume:
13
Issue:
1
ISSN:
1869-9529
Page Range / eLocation ID:
229 to 249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been significant study on the sample complexity of testing properties of distributions over large domains. For many properties, it is known that the sample complexity can be substantially smaller than the domain size. For example, over a domain of size n, distinguishing the uniform distribution from distributions that are far from uniform in ℓ1-distance uses only O(n−−√) samples. However, the picture is very different in the presence of arbitrary noise, even when the amount of noise is quite small. In this case, one must distinguish if samples are coming from a distribution that is ϵ-close to uniform from the case where the distribution is (1−ϵ)-far from uniform. The latter task requires nearly linear in n samples (Valiant, 2008; Valiant and Valiant, 2017a). In this work, we present a noise model that on one hand is more tractable for the testing problem, and on the other hand represents a rich class of noise families. In our model, the noisy distribution is a mixture of the original distribution and noise, where the latter is known to the tester either explicitly or via sample access; the form of the noise is also known \emph{a priori}. Focusing on the identity and closeness testing problems leads to the following mixture testing question: Given samples of distributions p,q1,q2, can we test if p is a mixture of q1 and q2? We consider this general question in various scenarios that differ in terms of how the tester can access the distributions, and show that indeed this problem is more tractable. Our results show that the sample complexity of our testers are exactly the same as for the classical non-mixture case. 
    more » « less
  2. There has been significant study on the sample complexity of testing properties of distributions over large domains. For many properties, it is known that the sample complexity can be substantially smaller than the domain size. For example, over a domain of size n, distinguishing the uniform distribution from distributions that are far from uniform in ℓ1-distance uses only O(n−−√) samples. However, the picture is very different in the presence of arbitrary noise, even when the amount of noise is quite small. In this case, one must distinguish if samples are coming from a distribution that is ϵ-close to uniform from the case where the distribution is (1−ϵ)-far from uniform. The latter task requires nearly linear in n samples (Valiant, 2008; Valiant and Valiant, 2017a). In this work, we present a noise model that on one hand is more tractable for the testing problem, and on the other hand represents a rich class of noise families. In our model, the noisy distribution is a mixture of the original distribution and noise, where the latter is known to the tester either explicitly or via sample access; the form of the noise is also known \emph{a priori}. Focusing on the identity and closeness testing problems leads to the following mixture testing question: Given samples of distributions p,q1,q2, can we test if p is a mixture of q1 and q2? We consider this general question in various scenarios that differ in terms of how the tester can access the distributions, and show that indeed this problem is more tractable. Our results show that the sample complexity of our testers are exactly the same as for the classical non-mixture case. 
    more » « less
  3. null (Ed.)
    On August 2-3, 2021, the Thomas J. O’Keefe Institute for Sustainable Supply of Strategic Minerals at Missouri University of Science and Technology (Missouri S&T) hosted the NSF-funded virtual workshop ‘Resilient Supply of Critical Minerals’. The workshop was convened via Zoom and attracted 158 registrants, including 108 registrants from academia (61 students), 30 registrants from government agencies, and 20 registrants from the private sector. Four topical sessions were covered: A. Mineral Exploration and Source Diversification. B. Supply Chain and Policy Issues. C. Improving Mineral Recycling and Reprocessing Technologies. D. Technological Alternatives to Critical Minerals. Each topical session was composed of two keynote lectures and followed by a breakout session that was designed to identify promising pathways towards increasing critical supply chain resilience in the United States. During each breakout session, participants were asked to address five questions: Q1. What are the roadblocks that affect the resilient supply of critical minerals? Q2. What are the most pressing research needs? Q3. What opportunities can lead to the fastest and biggest impact? Q4. What skills training is required to meet future workforce demands? Q5. What other questions should be asked, but are commonly overlooked? Several issues that limit critical mineral supply chain resilience in the United States were identified and discussed in all breakout sessions, including: 1. Insufficient understanding of domestic critical minerals resources. To address this issue, workshop participants highlighted the need for (i) more geologic research to identify new and evaluate existing resources; and (ii) a qualitative and quantitative assessment of critical minerals that may be recovered as by/co-products from existing production streams. 2. Technical limitations of current mineral processing and recycling technologies. To address this issue, workshop participants highlighted the need for (i) innovative mineral processing technologies, including more environmentally friendly chemicals/solvents, and (ii) automated recycling technologies for appliances and e-waste. Participants also highlighted the need for a centralized and simplified way to collect recyclable materials, and incentives for the public to participate in recycling. 3. Long permitting processes for mining and mineral processing operations, with often unpredictable outcomes. To address this issue, workshop participants suggested the development of new critical mineral focused policies with faster processing times and more transparent / predictable decision-making processes. 4. The negative public image of mining and mineral processing operations. To address this issue, workshop participants suggested to design public outreach / education initiatives and to include local communities into decision-making processes. 5. Limited availability of a critical mineral workforce. To address this issue, workshop participants suggested an increased focus on critical mineral specific skill training in higher education institutions, and advanced training of the existing workforce. 
    more » « less
  4. Raw data of scanning electron microscopy (SEM), atomic force microscopy (AFM), force spectroscopy, data analysis and plotting, optical microscopy, and finite element simulations (FEA) for our manuscript. File Formats AFM raw data is provided in Gwyddion format, which can be viewed using the Gwyddion AFM viewer, which has been released under the GNU public software licence GPLv3 and can be downloaded free of charge at http://gwyddion.net/ Optical microscopy data is provided in JPEG format SEM raw data is provided in TIFF format Data analysis codes were written in MATLAB (https://www.mathworks.com/products/matlab) and stored as *.m files Imported raw data to MATLAB and saved MATLAB data were stored as MATLAB multidimensional arrays (MATLAB “struct” data format, *.mat files) FEA results were saved as text files, .txt files) Data (Folder Structure) The data in the dataverse is best viewed in Tree mode. Read me file.docx More Explanations of analysis in docx format. Figure 1 Figure 1 - panel b.jpg (5.5 MB) Optical micrograph (JPEG format) Figure 1 - panel c - AFM Raw Data.gwy (8.0 MB) AFM raw data (Gwyddion format) Figure 1 - panel e - P0_Force-curve_raw_data.txt (3 KB) Raw force-displacement data at P0 (text format) Figure 1 - panel e - Px_Force-curve_raw_data.txt (3 KB) Raw force-displacement data at Px (text format) Figure 1 - panel e - Py_Force-curve_raw_data.txt (3 KB) Raw force-displacement data at Py (text format) Figure 1 - panel e - P0_simulation_raw_data.txt (12 KB) FEA simulated force-distance data at P0 (text format) Figure 1 - panel e - Px_simulation_raw_data.txt (12 KB) FEA simulated force-distance data at Px (text format) Figure 1 - panel e - Py_simulation_raw_data.txt (12 KB) FEA simulated force-distance data at Py (text format) Figure 1 - panel e - FCfindc.m (2 KB) MATLAB code to calculate inverse optical lever sensitivity (InverseOLS) of AFM cantelever (matlab .m format) Figure 1 - panel e - FreqFindANoise_new.m (2 KB) MATLAB code to calculate white noise constant, A (Explained in the Read me file) (matlab .m format) Figure 1 - panel e - FreqFindQ_new.m (4 KB) MATLAB code to calculate Q factor of the AFM cantelever (matlab .m format) Figure 1 - panel e - FCkeff.m (2 KB) MATLAB code to calculate the effective spring constant k of the AFM cantelever (matlab .m format) Figure 1 - panel e - FCimport.m (7 KB) MATLAB code to import raw force-displacement data into MATLAB (matlab .m format) Figure 1 - panel e - FCForceDist.m (2 KB) MATLAB code to convert raw force-displacement data into force-distance data (matlab .m format) Figure 1 - panel e - Figure 1- Panel e - data.mat (6 KB) MATALB struct data file for calibrated force-distance data at all indentation points (matlab .mat format) Figure 1 - panel e - Panel_e_MatlabCode.m (6 KB) MATALB code for plotting experimental and simulated force curves in panel e (matlab .m format) Figure 1 - panel e - Read me file - force curve calibration.docx (14 KB) Explains force curve calibration (.docx format) Figure 1 - panel e - Read me file - lever spring constant calibration.docx (14 KB) Explains AFM lever spring constant calibration (.docx format) Figure 2 Figure 2 - panel a - MATLAB data.mat (2.6 KB) MATALB data file for simulated data (matlab .mat format) Figure 2 - panel b - MATLAB data.mat (2.4 KB) MATALB data file for simulated data (matlab .mat format) Figure 2 - panel a - simulation raw data.txt (5.0 KB) Raw simulation data: xyz coordinates of the nodes of deformed FEA mesh (text format) Figure 2 - panel b - simulation raw data.txt (5.0 KB) Raw simulation data: xyz coordinates of the nodes of deformed FEA mesh (text format) Figure 2 - panel ab - MATLABcode.m (1.0 KB) MATALB code for plotting panel a b figures (matlab .m format) Figure 2 - panel c - Degree of Anisotropy datacode.m (1.0 KB) MATALB code for plotting panel c graph (matlab .m format) Figure 3 Figure 3 - panel a - App_curve_1_raw_data.txt (35 KB) Raw force-displacement data approach curve 1 (text format) Figure 3 - panel a - App_curve_2_raw_data.txt (34 KB) Raw force-displacement data approach curve 2 (text format) Figure 3 - panel a - App_curve_3_raw_data.txt (34 KB) Raw force-displacement data approach curve 3 (text format) Figure 3 - panel a - App_curve_4_raw_data.txt (34 KB) Raw force-displacement data approach curve 4 (text format) Figure 3 - panel a - Ret_curve_1_raw_data.txt (35 KB) Raw force-displacement data of retract curve 1 (text format) Figure 3 - panel a - Ret_curve_2_raw_data.txt (35 KB) Raw force-displacement data of retract curve 2 (text format) Figure 3 - panel a - Ret_curve_3_raw_data.txt (35 KB) Raw force-displacement data of retract curve 3 (text format) Figure 3 - panel a - Simulation_raw_data-part 1.txt (43 KB) simulated force-displacement data of -part 1 (text format) Figure 3 - panel a - Simulation_raw_data-part 2.txt (43 KB) simulated force-displacement data of -part 2 (text format) Figure 3 - panel a - FCfindc.m (2 KB) MATLAB code to calculate inverse optical lever sensitivity (InverseOLS) of AFM cantelever (matlab .m format) Figure 3 - panel a - FreqFindANoise_new.m (2 KB) MATLAB code to calculate white noise constant, A (Explained in the Read me file) (matlab .m format) Figure 3 - panel a - FreqFindQ_new.m (4 KB) MATLAB code to calculate Q factor of the AFM cantelever (matlab .m format) Figure 3 - panel a - FCkeff.m (2 KB) MATLAB code to calculate the effective spring constant k of the AFM cantelever (matlab .m format) Figure 3 - panel a - FCimport.m (7 KB) MATLAB code to import raw force-displacement data into MATLAB (matlab .m format) Figure 3 - panel a - FCForceDist.m (2 KB) MATLAB code to convert raw force-displacement data into force-distance data (matlab .m format) Figure 1 - panel e - Read me file - force curve calibration.docx (14 KB) Explains force curve calibration (.docx format) Figure 1 - panel e - Read me file - lever spring constant calibration.docx (14 KB) Explains AFM lever spring constant calibration (.docx format) Figure 3 - panel b - SEM Raw Data.tiff (9 KB) SEM raw image of broken silk membrane due to extreme indentation (.tiff format) 
    more » « less
  5. Abstract

    Severe droughts have led to lower plant growth and high mortality in many ecosystems worldwide, including tropical forests. Drought vulnerability differs among species, but there is limited consensus on the nature and degree of this variation in tropical forest communities. Understanding species‐level vulnerability to drought requires examination of hydraulic traits since these reflect the different strategies species employ for surviving drought.

    Here, we examined hydraulic traits and growth reductions during a severe drought for 12 common woody species in a wet tropical forest community in Puerto Rico to ask: Q1. To what extent can hydraulic traits predict growth declines during drought? We expected that species with more hydraulically vulnerable xylem and narrower safety margins (SMP50) would grow less during drought. Q2. How does species successional association relate to the levels of vulnerability to drought and hydraulic strategies? We predicted that early‐ and mid‐successional species would exhibit more acquisitive strategies, making them more susceptible to drought than shade‐tolerant species. Q3. What are the different hydraulic strategies employed by species and are there trade‐offs between drought avoidance and drought tolerance? We anticipated that species with greater water storage capacity would have leaves that lose turgor at higher xylem water potential and be less resistant to embolism forming in their xylem (P50).

    We found a large range of variation in hydraulic traits across species; however, they did not closely capture the magnitude of growth declines during drought. Among larger trees (≥10 cm diameter at breast height—DBH), some tree species with high xylem embolism vulnerability (P50) and risk of hydraulic failure (SMP50) experienced substantial growth declines during drought, but this pattern was not consistent across species. We found a trade‐off among species between drought avoidance (capacitance) and drought tolerating (P50) in this tropical forest community. Hydraulic strategies did not align with successional associations. Instead, some of the more drought‐vulnerable species were shade‐tolerant dominants in the community, suggesting that a drying climate could lead to shifts in long‐term forest composition and function in Puerto Rico and the Caribbean.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less