skip to main content

Title: Replication Data for: Multi-Point Nanoindentation Method to Determine Mechanical Anisotropy in Nanofibrillar Thin Films
Raw data of scanning electron microscopy (SEM), atomic force microscopy (AFM), force spectroscopy, data analysis and plotting, optical microscopy, and finite element simulations (FEA) for our manuscript. File FormatsMore>>
; ;
Harvard Dataverse
Publication Year:
Award ID(s):
1905902 2105158
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Raw data of optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and diameter measurements of the exfoliated and self-assembled nanofibrils for our manuscript. File Formats AFM raw data is provided in Gwyddion format, which can be viewed using the Gwyddion AFM viewer, which has been released under the GNU public software licence GPLv3 and can be downloaded free of charge at Optical microscopy data is provided in JPEG format SEM raw data is provided in TIFF format Data analysis codes were written in MATLAB ( and stored as *.m files Data analysis results were stored as MATLAB multidimensional arrays (MATLAB “struct” data format, *.mat files) Data (Folder Structure) The data in the dataverse is best viewed in Tree mode. This description in Markdown format. Figure 2 - Microscopy Raw Data Figure 2 - panel a.jpg (7.2 MB) Optical micrograph (JPEG format) Figure 2 - panel b.jpg (6.1 MB) Optical micrograph (JPEG format) Figure 2 - panel c f.tif (1.2 MB) SEM raw data (TIFF format) Figure 2 - panel d.tif (1.2 MB) SEM raw data (TIFF format) Figure 2 - panel e - Exfoliated Fibrils.gwy (32.0 MB) AFM raw data (Gwyddion format) Figure 3 -More>>
  2. Abstract
    The raw data for the associated manuscript is organized here into three categories: 1) relating to the measurement and analysis of the native recluse spiders loop junctions, 2) raw images found in the figures throughout the manuscript, and 3) relating to the experiments testing the effect that junction angle has on the strength of two intersecting tapes. It is recommended to browse the data files in Tree mode, which will make the files appear in folders reflecting this organization. 1) Loxosceles Loop Junction Images and Analysis The folder titled, SEM Raw Images, has all of the scanning electron microscopy (SEM) images taken of the native recluse loop junctions. Some images are close-ups of individual junctions and others take a broader perspective (macro) of many loop junctions in series. Where possible several close-up images of the individual junctions are accompanied with a macro image. These images were imported into ImageJ where the junction angle was measured. The measurements for all 41 loop junctions observed are in the folder titled, Raw Data Files in the file titled, Loxosceles Loop Junction Angle Measurements.txt. The folder titled, Raw Data Files contains, in addition to the angle measurements, the raw data for analyzing theMore>>
  3. Abstract
    This dataset contains raw data, processed data, and the codes used for data processing in our manuscript from our Fourier-transform infrared (FTIR) spectroscopy, Nuclear magnetic resonance (NMR), Raman spectroscopy, and X-ray diffraction (XRD) experiments. The data and codes for the fits of our unpolarized Raman spectra to polypeptide spectra is also included. The following explains the folder structure of the data provided in this dataset, which is also explained in the file ReadMe.txt. Browsing the data in Tree view is recommended. Folder contents Codes Raman Data Processing: The MATLAB script file RamanDecomposition.m contains the code to decompose the sub-peaks across different polarized Raman spectra (XX, XZ, ZX, ZZ, and YY), considering a set of pre-determined restrictions. The helper functions used in RamanDecomposition.m are included in the Helpers folder. RamanDecomposition.pdf is a PDF printout of the MATLAB code and output. P Value Simulation: 31_helix.ipynb and a_helix.ipynb: These two Jupyter Notebook files contain the intrinsic P value simulation for the 31-helix and alpha-helix structures. The simulation results were used to prepare Supplementary Table 4. See more details in the comments contained.,,, and These python files contains the class definitions used in 31_helix.ipynb and a_helix.ipynb. See more detailsMore>>
  4. Abstract
    <p>This data set for the manuscript entitled &#34;Design of Peptides that Fold and Self-Assemble on Graphite&#34; includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled to 10 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included.</p> <p>Version: 2.0</p> <p>Changes versus version 1.0 are the addition of the free energy of folding, adsorption, and pairing calculations (Sim_Figure-7) and shifting of the figure numbers to accommodate this addition.</p> <p><br /> Conventions Used in These Files<br /> &#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;&#61;</p> <p>Structure Files<br /> ----------------<br /> - graph_*.psf or sol_*.psf (original NAMD (XPLOR?) format psf file including atom details (type, charge, mass),More>>
  5. Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a National Science Foundation (NSF) planning grant [4] to explore how best the community can leverage this resource. One goal of this poster presentation is to stimulate community-wide discussions about this project and determine how this valuable resource can best meet the needs of the public. The computing infrastructure required to support this database is extensive [5] and includes two HIPAA-secure computer networks, dual petabyte file servers, and Aperio’s eSlide Manager (eSM) software [6]. We currently have digitized over 50,000 slides from 2,846 patients and 2,942 clinical cases. There is an average of 12.4 slides per patient and 10.5 slides per casemore »with one report per case. The data is organized by tissue type as shown below: Filenames: tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_0a001_00123456_lvl0001_s000.svs tudp/v1.0.0/svs/gastro/000001/00123456/2015_03_05/0s15_12345/0s15_12345_00123456.docx Explanation: tudp: root directory of the corpus v1.0.0: version number of the release svs: the image data type gastro: the type of tissue 000001: six-digit sequence number used to control directory complexity 00123456: 8-digit patient MRN 2015_03_05: the date the specimen was captured 0s15_12345: the clinical case name 0s15_12345_0a001_00123456_lvl0001_s000.svs: the actual image filename consisting of a repeat of the case name, a site code (e.g., 0a001), the type and depth of the cut (e.g., lvl0001) and a token number (e.g., s000) 0s15_12345_00123456.docx: the filename for the corresponding case report We currently recognize fifteen tissue types in the first installment of the corpus. The raw image data is stored in Aperio’s “.svs” format, which is a multi-layered compressed JPEG format [3,7]. Pathology reports containing a summary of how a pathologist interpreted the slide are also provided in a flat text file format. A more complete summary of the demographics of this pilot corpus will be presented at the conference. Another goal of this poster presentation is to share our experiences with the larger community since many of these details have not been adequately documented in scientific publications. There are quite a few obstacles in collecting this data that have slowed down the process and need to be discussed publicly. Our backlog of slides dates back to 1997, meaning there are a lot that need to be sifted through and discarded for peeling or cracking. Additionally, during scanning a slide can get stuck, stalling a scan session for hours, resulting in a significant loss of productivity. Over the past two years, we have accumulated significant experience with how to scan a diverse inventory of slides using the Aperio AT2 high-volume scanner. We have been working closely with the vendor to resolve many problems associated with the use of this scanner for research purposes. This scanning project began in January of 2018 when the scanner was first installed. The scanning process was slow at first since there was a learning curve with how the scanner worked and how to obtain samples from the hospital. From its start date until May of 2019 ~20,000 slides we scanned. In the past 6 months from May to November we have tripled that number and how hold ~60,000 slides in our database. This dramatic increase in productivity was due to additional undergraduate staff members and an emphasis on efficient workflow. The Aperio AT2 scans 400 slides a day, requiring at least eight hours of scan time. The efficiency of these scans can vary greatly. When our team first started, approximately 5% of slides failed the scanning process due to focal point errors. We have been able to reduce that to 1% through a variety of means: (1) best practices regarding daily and monthly recalibrations, (2) tweaking the software such as the tissue finder parameter settings, and (3) experience with how to clean and prep slides so they scan properly. Nevertheless, this is not a completely automated process, making it very difficult to reach our production targets. With a staff of three undergraduate workers spending a total of 30 hours per week, we find it difficult to scan more than 2,000 slides per week using a single scanner (400 slides per night x 5 nights per week). The main limitation in achieving this level of production is the lack of a completely automated scanning process, it takes a couple of hours to sort, clean and load slides. We have streamlined all other aspects of the workflow required to database the scanned slides so that there are no additional bottlenecks. To bridge the gap between hospital operations and research, we are using Aperio’s eSM software. Our goal is to provide pathologists access to high quality digital images of their patients’ slides. eSM is a secure website that holds the images with their metadata labels, patient report, and path to where the image is located on our file server. Although eSM includes significant infrastructure to import slides into the database using barcodes, TUH does not currently support barcode use. Therefore, we manage the data using a mixture of Python scripts and manual import functions available in eSM. The database and associated tools are based on proprietary formats developed by Aperio, making this another important point of community-wide discussion on how best to disseminate such information. Our near-term goal for the TUDP Corpus is to release 100,000 slides by December 2020. We hope to continue data collection over the next decade until we reach one million slides. We are creating two pilot corpora using the first 50,000 slides we have collected. The first corpus consists of 500 slides with a marker stain and another 500 without it. This set was designed to let people debug their basic deep learning processing flow on these high-resolution images. We discuss our preliminary experiments on this corpus and the challenges in processing these high-resolution images using deep learning in [3]. We are able to achieve a mean sensitivity of 99.0% for slides with pen marks, and 98.9% for slides without marks, using a multistage deep learning algorithm. While this dataset was very useful in initial debugging, we are in the midst of creating a new, more challenging pilot corpus using actual tissue samples annotated by experts. The task will be to detect ductal carcinoma (DCIS) or invasive breast cancer tissue. There will be approximately 1,000 images per class in this corpus. Based on the number of features annotated, we can train on a two class problem of DCIS or benign, or increase the difficulty by increasing the classes to include DCIS, benign, stroma, pink tissue, non-neoplastic etc. Those interested in the corpus or in participating in community-wide discussions should join our listserv,, to be kept informed of the latest developments in this project. You can learn more from our project website:« less