Deep Learning (DL) methods have dramatically increased in popularity in recent years. While its initial success was demonstrated in the classification and manipulation of image data, there has been significant growth in the application of DL methods to problems in the biomedical sciences. However, the greater prevalence and complexity of missing data in biomedical datasets present significant challenges for DL methods. Here, we provide a formal treatment of missing data in the context of Variational Autoencoders (VAEs), a popular unsupervised DL architecture commonly used for dimension reduction, imputation, and learning latent representations of complex data. We propose a new VAE architecture, NIMIWAE, that is one of the first to flexibly account for both ignorable and non-ignorable patterns of missingness in input features at training time. Following training, samples can be drawn from the approximate posterior distribution of the missing data can be used for multiple imputation, facilitating downstream analyses on high dimensional incomplete datasets. We demonstrate through statistical simulation that our method outperforms existing approaches for unsupervised learning tasks and imputation accuracy. We conclude with a case study of an EHR dataset pertaining to 12,000 ICU patients containing a large number of diagnostic measurements and clinical outcomes, where many features are only partially observed.
more »
« less
Deep Learning in Neuroimaging: Overcoming Challenges With Emerging Approaches
Deep learning (DL) is of great interest in psychiatry due its potential yet largely untapped ability to utilize multidimensional datasets (such as fMRI data) to predict clinical outcomes. Typical DL methods, however, have strong assumptions, such as large datasets and underlying model opaqueness, that are suitable for natural image prediction problems but not medical imaging. Here we describe three relatively novel DL approaches that may help accelerate its incorporation into mainstream psychiatry research and ultimately bring it into the clinic as a prognostic tool. We first introduce two methods that can reduce the amount of training data required to develop accurate models. These may prove invaluable for fMRI-based DL given the time and monetary expense required to acquire neuroimaging data. These methods are (1) transfer learning − the ability of deep learners to incorporate knowledge learned from one data source (e.g., fMRI data from one site) and apply it toward learning from a second data source (e.g., data from another site), and (2) data augmentation (via Mixup) − a self-supervised learning technique in which “virtual” instances are created. We then discuss explainable artificial intelligence (XAI), i.e., tools that reveal what features (and in what combinations) deep learners use to make decisions. XAI can be used to solve the “black box” criticism common in DL and reveal mechanisms that ultimately produce clinical outcomes. We expect these techniques to greatly enhance the applicability of DL in psychiatric research and help reveal novel mechanisms and potential pathways for therapeutic intervention in mental illness.
more »
« less
- Award ID(s):
- 1910306
- PAR ID:
- 10359241
- Date Published:
- Journal Name:
- Frontiers in Psychiatry
- Volume:
- 13
- ISSN:
- 1664-0640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Clinical diagnosis of Alzheimer’s disease (AD) is usually made after symptoms such as short-term memory loss are exhibited, which minimizes the intervention and treatment options. The existing screening techniques cannot distinguish between stable MCI (sMCI) cases (i.e., patients who do not convert to AD for at least three years) and progressive MCI (pMCI) cases (i.e., patients who convert to AD in three years or sooner). Delayed diagnosis of AD also disproportionately affects underrepresented and socioeconomically disadvantaged populations. The significant positive impact of an early diagnosis solution for AD across diverse ethno-racial and demographic groups is well-known and recognized. While advancements in high-throughput technologies have enabled the generation of vast amounts of multimodal clinical, and neuroimaging datasets related to AD, most methods utilizing these data sets for diagnostic purposes have not found their way in clinical settings. To better understand the landscape, we surveyed the major preprocessing, data management, traditional machine-learning (ML), and deep learning (DL) techniques used for diagnosing AD using neuroimaging data such as structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Once we had a good understanding of the methods available, we conducted a study to assess the reproducibility and generalizability of open-source ML models. Our evaluation shows that existing models show reduced generalizability when different cohorts of the data modality are used while controlling other computational factors. The paper concludes with a discussion of major challenges that plague ML models for AD diagnosis and biomarker discovery.more » « less
-
Abstract Convolutional neural networks (CNNs) have recently attracted great attention in geoscience due to their ability to capture non-linear system behavior and extract predictive spatiotemporal patterns. Given their black-box nature however, and the importance of prediction explainability, methods of explainable artificial intelligence (XAI) are gaining popularity as a means to explain the CNN decision-making strategy. Here, we establish an intercomparison of some of the most popular XAI methods and investigate their fidelity in explaining CNN decisions for geoscientific applications. Our goal is to raise awareness of the theoretical limitations of these methods and gain insight into the relative strengths and weaknesses to help guide best practices. The considered XAI methods are first applied to an idealized attribution benchmark, where the ground truth of explanation of the network is known a priori , to help objectively assess their performance. Secondly, we apply XAI to a climate-related prediction setting, namely to explain a CNN that is trained to predict the number of atmospheric rivers in daily snapshots of climate simulations. Our results highlight several important issues of XAI methods (e.g., gradient shattering, inability to distinguish the sign of attribution, ignorance to zero input) that have previously been overlooked in our field and, if not considered cautiously, may lead to a distorted picture of the CNN decision-making strategy. We envision that our analysis will motivate further investigation into XAI fidelity and will help towards a cautious implementation of XAI in geoscience, which can lead to further exploitation of CNNs and deep learning for prediction problems.more » « less
-
Abstract While the complexity of laser powder bed fusion (LPBF) processes facilitates customized and metal-based functional parts to be built, existing process monitoring techniques have limitations. Therefore, the need for intricate process monitoring has grown. Non-uniform emission readings are correlated with overheating. Therefore, process monitoring of areas experiencing excess thermal emission during print to track potential overheating is needed. A process monitoring technique using deep neural network-long short-term memory (DNN-LSTM) deep learning (DL) models for emission tracking has been developed. The DNN component harnesses process parameters, while the LSTM harnesses the time-series emission structure on multiple sets of prints in parallel. Moreover, trust and interpretation of the opaque methodology are needed to make the process widely applicable. Existing explainable artificial intelligence (XAI) methods are inoperative with the model developed. We overcome this gap by developing an attribution-based XAI-enabled DNN-LSTM for predicting, explaining, and evaluating layer-wise emission prediction. Interpretation from attribution-based methods, namely, Shapley additive explanations, integrated gradient explanations, and local interpretable model-agnostic explanations, reveal an estimate of how each physics variable (process parameters, layer number, layer-wise average emission readings) impacts each future layer-wise average emission behavior as decided by the DL model. Finally, existing evaluation metrics of XAI are mostly domain-focused. We overcome this gap by establishing evaluation criteria appropriate for understanding the trust of the explanations in the context of thermal emission prediction for LPBF.more » « less
-
Deep learning (DL) is growing in popularity for many data analytics applications, including among enterprises. Large business-critical datasets in such settings typically reside in RDBMSs or other data systems. The DB community has long aimed to bring machine learning (ML) to DBMS-resident data. Given past lessons from in-DBMS ML and recent advances in scalable DL systems, DBMS and cloud vendors are increasingly interested in adding more DL support for DB-resident data. Recently, a new parallel DL model selection execution approach called Model Hopper Parallelism (MOP) was proposed. In this paper, we characterize the particular suitability of MOP for DL on data systems, but to bring MOP-based DL to DB-resident data, we show that there is no single "best" approach, and an interesting tradeoff space of approaches exists. We explain four canonical approaches and build prototypes upon Greenplum Database, compare them analytically on multiple criteria (e.g., runtime efficiency and ease of governance) and compare them empirically with large-scale DL workloads. Our experiments and analyses show that it is non-trivial to meet all practical desiderata well and there is a Pareto frontier; for instance, some approaches are 3x-6x faster but fare worse on governance and portability. Our results and insights can help DBMS and cloud vendors design better DL support for DB users. All of our source code, data, and other artifacts are available at https://github.com/makemebitter/cerebro-ds.more » « less
An official website of the United States government

