skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Type 2 diabetes mellitus accelerates brain aging and cognitive decline: Complementary findings from UK Biobank and meta-analyses
Background: Type 2 diabetes mellitus (T2DM) is known to be associated with neurobiological and cognitive deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in the context of the brain are currently unknown. Methods: We characterized neurocognitive effects independently associated with T2DM and age in a large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by applying correlation measures to the separately characterized neurocognitive changes. Our findings were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM and healthy controls (HCs). We also evaluated in a cohort of T2DM-diagnosed individuals using UK Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects. Results: The UK Biobank dataset included cognitive and neuroimaging data (N = 20,314), including 1012 T2DM and 19,302 HCs, aged between 50 and 80 years. Duration of T2DM ranged from 0 to 31 years (mean 8.5 ± 6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis evaluated 34 cognitive studies (N = 22,231) and 60 neuroimaging studies: 30 of T2DM (N = 866) and 30 of aging (N = 1088). Compared to age, sex, education, and hypertension-matched HC, T2DM was associated with marked cognitive deficits, particularly in executive functioning and processing speed . Likewise, we found that the diagnosis of T2DM was significantly associated with gray matter atrophy, primarily within the ventral striatum , cerebellum , and putamen , with reorganization of brain activity (decreased in the caudate and premotor cortex and increased in the subgenual area , orbitofrontal cortex, brainstem, and posterior cingulate cortex ). The structural and functional changes associated with T2DM show marked overlap with the effects correlating with age but appear earlier, with disease duration linked to more severe neurodegeneration. Metformin treatment status was not associated with improved neurocognitive outcomes. Conclusions: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging. T2DM gray matter atrophy occurred approximately 26% ± 14% faster than seen with normal aging; disease duration was associated with increased neurodegeneration. Mechanistically, our results suggest a neurometabolic component to brain aging. Clinically, neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and treatment efficacy based on neurological effects. Funding: The research described in this article was funded by the W. M. Keck Foundation (to LRMP), the White House Brain Research Through Advancing Innovative Technologies (BRAIN) Initiative (NSFNCS-FR 1926781 to LRMP), and the Baszucki Brain Research Fund (to LRMP). None of the funding sources played any role in the design of the experiments, data collection, analysis, interpretation of the results, the decision to publish, or any aspect relevant to the study. DJW reports serving on data monitoring committees for Novo Nordisk. None of the authors received funding or in-kind support from pharmaceutical and/or other companies to write this article.  more » « less
Award ID(s):
1926781
PAR ID:
10359263
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we manually defined 4,362 PMC sulci in 432 hemispheres in 216 human participants (50.5% female) and found that these smaller putative tertiary sulci showed more age- and AD-related thinning than larger, more consistent sulci, with the strongest effects for two newly uncovered sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci was most associated with memory and executive function scores in older adults. These findings lend support to the retrogenesis hypothesis linking brain development and aging, and provide new neuroanatomical targets for future studies of aging and AD. Significance StatementLarge-scale changes in cortical structure in aging suggest sulci are particularly vulnerable to atrophy. However, tertiary sulci, the smallest and most individually variable cortical folds associated with cognitive development, have not been studied in aging. Here, we investigate tertiary sulci for the first time in aging and Alzheimer's disease (AD). We find that these smaller and shallower sulci show more age- and AD-related thinning than larger sulci in posteromedial cortex (PMC), and that the atrophy of a subset of PMC sulci is most associated with cognition in older adults. These findings support classical theories linking developmental and aging trajectories at a novel anatomical resolution and provide insight into relationships between individual differences in structural brain changes and cognitive decline. 
    more » « less
  2. ABSTRACT With the increasing availability of large‐scale multimodal neuroimaging datasets, it is necessary to develop data fusion methods which can extract cross‐modal features. A general framework, multidataset independent subspace analysis (MISA), has been developed to encompass multiple blind source separation approaches and identify linked cross‐modal sources in multiple datasets. In this work, we utilized the multimodal independent vector analysis (MMIVA) model in MISA to directly identify meaningful linked features across three neuroimaging modalities—structural magnetic resonance imaging (MRI), resting state functional MRI and diffusion MRI—in two large independent datasets, one comprising of control subjects and the other including patients with schizophrenia. Results show several linked subject profiles (sources) that capture age‐associated decline, schizophrenia‐related biomarkers, sex effects, and cognitive performance. For sources associated with age, both shared and modality‐specific brain‐age deltas were evaluated for association with non‐imaging variables. In addition, each set of linked sources reveals a corresponding set of cross‐modal spatial patterns that can be studied jointly. We demonstrate that the MMIVA fusion model can identify linked sources across multiple modalities, and that at least one set of linked, age‐related sources replicates across two independent and separately analyzed datasets. The same set also presented age‐adjusted group differences, with schizophrenia patients indicating lower multimodal source levels. Linked sets associated with sex and cognition are also reported for the UK Biobank dataset. 
    more » « less
  3. Abstract AimsElevated blood pressure (BP) is a prevalent modifiable risk factor for cardiovascular diseases and contributes to cognitive decline in late life. Despite the fact that functional changes may precede irreversible structural damage and emerge in an ongoing manner, studies have been predominantly informed by brain structure and group-level inferences. Here, we aim to delineate neurobiological correlates of BP at an individual level using machine learning and functional connectivity. Methods and resultsBased on whole-brain functional connectivity from the UK Biobank, we built a machine learning model to identify neural representations for individuals’ past (∼8.9 years before scanning, N = 35 882), current (N = 31 367), and future (∼2.4 years follow-up, N = 3 138) BP levels within a repeated cross-validation framework. We examined the impact of multiple potential covariates, as well as assessed these models’ generalizability across various contexts.The predictive models achieved significant correlations between predicted and actual systolic/diastolic BP and pulse pressure while controlling for multiple confounders. Predictions for participants not on antihypertensive medication were more accurate than for currently medicated patients. Moreover, the models demonstrated robust generalizability across contexts in terms of ethnicities, imaging centres, medication status, participant visits, gender, age, and body mass index. The identified connectivity patterns primarily involved the cerebellum, prefrontal, anterior insula, anterior cingulate cortex, supramarginal gyrus, and precuneus, which are key regions of the central autonomic network, and involved in cognition processing and susceptible to neurodegeneration in Alzheimer’s disease. Results also showed more involvement of default mode and frontoparietal networks in predicting future BP levels and in medicated participants. ConclusionThis study, based on the largest neuroimaging sample currently available and using machine learning, identifies brain signatures underlying BP, providing evidence for meaningful BP-associated neural representations in connectivity profiles. 
    more » « less
  4. Ideation is a key phase in engineering design and brainstorming is an established method for ideation. A limitation of the brainstorming process is idea production tends to peak at the beginning and quickly decreases with time. In this exploratory study, we tested an innovative technique to sustain ideation by providing designers feedback about their neurocognition. We used a neuroimaging technique (fNIRS) to monitor students’ neurocognitive activations during a brainstorming task. Half received real-time feedback about their neurocognitive activation in their prefrontal cortex, a brain region associated with working memory and cognitive flexibility. Students who received the neurocognitive feedback maintained higher cortical activation and longer sustained peak activation. Students receiving the neurocognitive feedback demonstrated a higher percentage of right-hemispheric dominance, a region associated to creative processing, compared to the students without neurocognitive feedback. The increase in right-hemispheric dominance positively correlated with an increase in the number of solutions during concept generation and a higher design idea fluency. These results demonstrate the prospective use of neurocognitive feedback to sustain the cognitive activations necessary for idea generation during brainstorming. Future research should explore the effect of neurocognitive feedback with a more robust sample of designers and compare neurocognitive feedback with other types of interventions to sustain ideation. 
    more » « less
  5. Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P, however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age. 
    more » « less