skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case
This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re . In this work, we show that there is constant 0 > c 0 ≪ 1 0 > c_0 \ll 1 , independent of R e \mathbf {Re} , such that sufficiently regular disturbances of size ϵ ≲ R e − 2 / 3 − δ \epsilon \lesssim \mathbf {Re}^{-2/3-\delta } for any δ > 0 \delta > 0 exist at least until t = c 0 ϵ − 1 t = c_0\epsilon ^{-1} and in general evolve to be O ( c 0 ) O(c_0) due to the lift-up effect. Further, after times t ≳ R e 1 / 3 t \gtrsim \mathbf {Re}^{1/3} , the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at t ≈ ϵ − 1 t \approx \epsilon ^{-1} . Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the “lift-up effect ⇒ \Rightarrow streak growth ⇒ \Rightarrow streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.  more » « less
Award ID(s):
1716466
PAR ID:
10359309
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
279
Issue:
1377
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let Γ be a Schottky semigroup in {\mathrm{SL}_{2}(\mathbf{Z})} ,and for {q\in\mathbf{N}} , let {\Gamma(q):=\{\gamma\in\Gamma:\gamma=e~{}(\mathrm{mod}~{}q)\}} be its congruence subsemigroupof level q . Let δ denote the Hausdorff dimension of the limit set of Γ.We prove the following uniform congruence counting theoremwith respect to the family of Euclidean norm balls {B_{R}} in {M_{2}(\mathbf{R})} of radius R :for all positive integer q with no small prime factors, \#(\Gamma(q)\cap B_{R})=c_{\Gamma}\frac{R^{2\delta}}{\#(\mathrm{SL}_{2}(%\mathbf{Z}/q\mathbf{Z}))}+O(q^{C}R^{2\delta-\epsilon}) as {R\to\infty} for some {c_{\Gamma}>0,C>0,\epsilon>0} which are independent of q .Our technique also applies to give a similar counting result for the continued fractions semigroup of {\mathrm{SL}_{2}(\mathbf{Z})} ,which arises in the study of Zaremba’s conjecture on continued fractions. 
    more » « less
  2. Abstract A flavour-tagged time-dependent angular analysis of $${{B} ^0_{s}} \!\rightarrow {{J /\psi }} \phi $$ B s 0 → J / ψ ϕ decays is presented where the $${J /\psi }$$ J / ψ meson is reconstructed through its decay to an $$e ^+e ^-$$ e + e - pair. The analysis uses a sample of pp collision data recorded with the LHCb experiment at centre-of-mass energies of 7 and $$8\text {\,Te V} $$ 8 \,Te V , corresponding to an integrated luminosity of $$3 \text {\,fb} ^{-1} $$ 3 \,fb - 1 . The $$C\!P$$ C P -violating phase and lifetime parameters of the $${B} ^0_{s} $$ B s 0 system are measured to be $${\phi _{{s}}} =0.00\pm 0.28\pm 0.07\text {\,rad}$$ ϕ s = 0.00 ± 0.28 ± 0.07 \,rad , $${\Delta \Gamma _{{s}}} =0.115\pm 0.045\pm 0.011\text {\,ps} ^{-1} $$ Δ Γ s = 0.115 ± 0.045 ± 0.011 \,ps - 1 and $${\Gamma _{{s}}} =0.608\pm 0.018\pm 0.012\text {\,ps} ^{-1} $$ Γ s = 0.608 ± 0.018 ± 0.012 \,ps - 1 where the first uncertainty is statistical and the second systematic. This is the first time that $$C\!P$$ C P -violating parameters are measured in the $${{B} ^0_{s}} \!\rightarrow {{J /\psi }} \phi $$ B s 0 → J / ψ ϕ decay with an $$e ^+e ^-$$ e + e - pair in the final state. The results are consistent with previous measurements in other channels and with the Standard Model predictions. 
    more » « less
  3. We present a weighted approach to compute a maximum cardinality matching in an arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph G(A cup B,E) with edge weights of 0 or 1. Let w <= n be an upper bound on the weight of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching in G in O~(m(sqrt{w} + sqrt{r} + wr/n)) time. When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m sqrt{n}) time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n and wr=O(n^{gamma}) for gamma < 3/2, then we can compute maximum cardinality matching in G in o(m sqrt{n}) time. Using our algorithm, we obtain a new O~(n^{4/3}/epsilon^4) time algorithm to compute an epsilon-approximate bottleneck matching of A,B subsetR^2 and an 1/(epsilon^{O(d)}}n^{1+(d-1)/(2d-1)}) poly log n time algorithm for computing epsilon-approximate bottleneck matching in d-dimensions. All previous algorithms take Omega(n^{3/2}) time. Given any graph G(A cup B,E) that has an easily computable balanced vertex separator for every subgraph G'(V',E') of size |V'|^{delta}, for delta in [1/2,1), we can apply our algorithm to compute a maximum matching in O~(mn^{delta/1+delta}) time improving upon the O(m sqrt{n}) time taken by the HK-Algorithm. 
    more » « less
  4. Abstract Building on work of Boneh, Durfee and Howgrave-Graham, we present a deterministic algorithm that provably finds all integers p such that $$p^r \mathrel {|}N$$ p r | N in time $$O(N^{1/4r+\epsilon })$$ O ( N 1 / 4 r + ϵ ) for any $$\epsilon > 0$$ ϵ > 0 . For example, the algorithm can be used to test squarefreeness of N in time $$O(N^{1/8+\epsilon })$$ O ( N 1 / 8 + ϵ ) ; previously, the best rigorous bound for this problem was $$O(N^{1/6+\epsilon })$$ O ( N 1 / 6 + ϵ ) , achieved via the Pollard–Strassen method. 
    more » « less
  5. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓 𝑓𝑓 / 𝑈𝑈 ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 − 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of 𝜃𝜃 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of ℎ 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s. 
    more » « less