With many data breaches and spoofing attacks on our networks, it becomes imperative to provide a reliable method for verifying the integrity of the source. Blockchain location-based proof-of-origin is explored for tracking trucks and vehicles. Blockchain applications that support quick authentication with these non-mutable ledger properties: consensus and implemented as smart contracts at the edge. This Blockchain application will now be known as the POWTracker platform, gathering data from multiple cameras. POWTracker is based on an existing GPS-based blockchain ledger and runs on an edge device that uses AI consensus and multiple cameras. By using GPS algorithms, we present a novel mining algorithm that rewards POW miners, providing a trustworthy, verifiable proof-of-location system.
more »
« less
Enable Fair Proof-of-Work (PoW) Consensus for Blockchains in IoT by Miner Twins (MinT)
Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment.
more »
« less
- Award ID(s):
- 2141468
- NSF-PAR ID:
- 10359349
- Date Published:
- Journal Name:
- Future Internet
- Volume:
- 13
- Issue:
- 11
- ISSN:
- 1999-5903
- Page Range / eLocation ID:
- 291
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample computing power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes - CIAA and STRIDE - to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems.more » « less
-
In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample com- puting power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes – CIAA and STRIDE – to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems.more » « less
-
Proof-of-Work (PoW) is one of the fundamental and widely-used consensus algorithms in blockchains. In PoW, nodes compete to receive the mining reward by trying to be the first to solve a puzzle. Despite its fairness and wide availability, traditional PoW incurs extreme computational and energy waste over the blockchain. This waste is considered to be one of the biggest problems in PoW-based blockchains and cryptocurrencies. In this work, we propose a new useful PoW called Proof-of-Useful-Randomness (PoUR) that mitigates the energy waste by incorporating pre-computed (disclosable) randomness into the PoW. The key idea is to inject special randomness into puzzles via algebraic commitments that can be stored and later disclosed. Unlike the traditional wasteful PoWs, our approach enables pre-computed commitments to be utilized by a vast array of public-key cryptography methods that require offline-online processing (e.g., digital signature, key exchange, zero-knowledge protocol). Moreover, our PoW preserves the desirable properties of the traditional PoW and therefore does not require a substantial alteration in the underlying protocol. We showed the security of our PoW, and then fully implemented it to validate its significant energy-saving capabilities.more » « less
-
IoT (Internet of Things) devices such as sensors have been actively used in 'fogs' to provide critical data during e.g., disaster response scenarios or in-home healthcare. Since IoT devices typically operate in resource-constrained computing environments at the network-edge, data transfer performance to the cloud as well as end-to-end security have to be robust and customizable. In this paper, we present the design and implementation of a middleware featuring "intermittent" and "flexible" end-to-end security for cloud-fog communications. Intermittent security copes with unreliable network connections, and flexibility is achieved through security configurations that are tailored to application needs. Our experiment results show how our middleware that leverages static pre-shared keys forms a promising solution for delivering light-weight, fast and resource-aware security for a variety of IoT-based applications.more » « less