skip to main content


Title: Mining Logical Event Schemas From Pre-Trained Language Models
We present NESL (the Neuro-Episodic Schema Learner), an event schema learning system that combines large language models, FrameNet parsing, a powerful logical representation of language, and a set of simple behavioral schemas meant to bootstrap the learning process. In lieu of a pre-made corpus of stories, our dataset is a continuous feed of “situation samples” from a pre-trained language model, which are then parsed into FrameNet frames, mapped into simple behavioral schemas, and combined and generalized into complex, hierarchical schemas for a variety of everyday scenarios. We show that careful sampling from the language model can help emphasize stereotypical properties of situations and de-emphasize irrelevant details, and that the resulting schemas specify situations more comprehensively than those learned by other systems.  more » « less
Award ID(s):
1940981
NSF-PAR ID:
10359402
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
Page Range / eLocation ID:
332 to 345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a means of augmenting FrameNet parsers with a formal logic parser to obtain rich semantic representations of events. These schematic representations of the frame events, which we call Episodic Logic (EL) schemas, abstract constants to variables, preserving their types and relationships to other individuals in the same text. Due to the temporal semantics of the chosen logical formalism, all identified schemas in a text are also assigned temporally bound "episodes" and related to one another in time. The semantic role information from the FrameNet frames is also incorporated into the schema's type constraints. We describe an implementation of this method using a neural FrameNet parser, and discuss the approach's possible applications to question answering and open-domain event schema learning. 
    more » « less
  2. Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method INCPROMPT to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, INCPROMPT can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ∼10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability. 
    more » « less
  3. The prefrontal cortex encodes and stores numerous, often disparate, schemas and flexibly switches between them. Recent research on artificial neural networks trained by reinforcement learning has made it possible to model fundamental processes underlying schema encoding and storage. Yet how the brain is able to create new schemas while preserving and utilizing old schemas remains unclear. Here we propose a simple neural network framework that incorporates hierarchical gating to model the prefrontal cortex’s ability to flexibly encode and use multiple disparate schemas. We show how gating naturally leads to transfer learning and robust memory savings. We then show how neuropsychological impairments observed in patients with prefrontal damage are mimicked by lesions of our network. Our architecture, which we call DynaMoE, provides a fundamental framework for how the prefrontal cortex may handle the abundance of schemas necessary to navigate the real world.

     
    more » « less
  4. With the rapid growth of online information services, a sheer volume of news data becomes available. To help people quickly digest the explosive information,we define a newproblem – schema-based news event profiling – profiling events reported in open-domain news corpora, with a set of slots and slot-value pairs for each event, where the set of slots forms the schema of an event type. Such profiling not only provides readers with concise views of events, but also facilitates various applications such as information retrieval, knowledge graph construction and question answering. It is however a quite challenging task. The first challenge is to find out events and event types because they are both initially unknown. The second difficulty is the lack of pre-defined event-type schemas. Lastly, even with the schemas extracted, to generate event profiles from them is still essential yet demanding. To address these challenges, we propose a fully automatic, unsupervised, three-step framework to obtain event profiles. First, we develop a Bayesian non-parametric model to detect events and event types by exploiting the slot expressions of the entities mentioned in news articles. Second, we propose an unsupervised embedding model for schema induction that encodes the insight: an entity may serve as the values of multiple slots in an event, but if it appears in more sentences along with the same set of more entities in the event, its slots in these sentences tend to be similar. Finally, we build event profiles by extracting slot values for each event based on the slots’ expression patterns. To the best of our knowledge, this is the first work on schema-based profiling for news events. Experimental results on a large news corpus demonstrate the superior performance of our method against the state-of-the-art baselines on event detection, schema induction and event profiling. 
    more » « less
  5. An algebraic model uses a set of algebraic equations to describe a situation. Constructing such models is a fundamental skill, but many students still lack the skill, even after taking several algebra courses in high school and college. For underachieving college students, we developed a tutoring system that taught students to decompose the to-be-modelled situation into schema applications, where a schema represents a simple relationship such as distance-rate-time or part-whole. However, when a model consists of multiple schema applications, it needs some connection among them, usually represented by letting the same variable appear in the slots of two or more schemas. Students in our studies seemed to have more trouble identifying connections among schemas than identifying the schema applications themselves. This paper describes a newly designed tutoring system that emphasizes such connections. An evaluation was conducted using a regression discontinuity design. It produced a marginally reliable positive effect of moderate size (d = 0.4). 
    more » « less