skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification
Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method INCPROMPT to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, INCPROMPT can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ∼10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability.  more » « less
Award ID(s):
1928474
PAR ID:
10463287
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume:
1
Page Range / eLocation ID:
5677 to 5697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the rapid growth of online information services, a sheer volume of news data becomes available. To help people quickly digest the explosive information,we define a newproblem – schema-based news event profiling – profiling events reported in open-domain news corpora, with a set of slots and slot-value pairs for each event, where the set of slots forms the schema of an event type. Such profiling not only provides readers with concise views of events, but also facilitates various applications such as information retrieval, knowledge graph construction and question answering. It is however a quite challenging task. The first challenge is to find out events and event types because they are both initially unknown. The second difficulty is the lack of pre-defined event-type schemas. Lastly, even with the schemas extracted, to generate event profiles from them is still essential yet demanding. To address these challenges, we propose a fully automatic, unsupervised, three-step framework to obtain event profiles. First, we develop a Bayesian non-parametric model to detect events and event types by exploiting the slot expressions of the entities mentioned in news articles. Second, we propose an unsupervised embedding model for schema induction that encodes the insight: an entity may serve as the values of multiple slots in an event, but if it appears in more sentences along with the same set of more entities in the event, its slots in these sentences tend to be similar. Finally, we build event profiles by extracting slot values for each event based on the slots’ expression patterns. To the best of our knowledge, this is the first work on schema-based profiling for news events. Experimental results on a large news corpus demonstrate the superior performance of our method against the state-of-the-art baselines on event detection, schema induction and event profiling. 
    more » « less
  2. We present NESL (the Neuro-Episodic Schema Learner), an event schema learning system that combines large language models, FrameNet parsing, a powerful logical representation of language, and a set of simple behavioral schemas meant to bootstrap the learning process. In lieu of a pre-made corpus of stories, our dataset is a continuous feed of “situation samples” from a pre-trained language model, which are then parsed into FrameNet frames, mapped into simple behavioral schemas, and combined and generalized into complex, hierarchical schemas for a variety of everyday scenarios. We show that careful sampling from the language model can help emphasize stereotypical properties of situations and de-emphasize irrelevant details, and that the resulting schemas specify situations more comprehensively than those learned by other systems. 
    more » « less
  3. Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction (IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface. 
    more » « less
  4. Since the early days of relational databases, it was realized that acyclic hypergraphs give rise to database schemas with desirable structural and algorithmic properties. In a bynow classical paper, Beeri, Fagin, Maier, and Yannakakis established several different equivalent characterizations of acyclicity; in particular, they showed that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for relations over that schema holds, which means that every collection of pairwise consistent relations over the schema is globally consistent. Even though real-life databases consist of bags (multisets), there has not been a study of the interplay between local consistency and global consistency for bags. We embark on such a study here and we first show that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for bags over that schema holds. After this, we explore algorithmic aspects of global consistency for bags by analyzing the computational complexity of the global consistency problem for bags: given a collection of bags, are these bags globally consistent? We show that this problem is in NP, even when the schema is part of the input. We then establish the following dichotomy theorem for fixed schemas: if the schema is acyclic, then the global consistency problem for bags is solvable in polynomial time, while if the schema is cyclic, then the global consistency problem for bags is NP-complete. The latter result contrasts sharply with the state of affairs for relations, where, for each fixed schema, the global consistency problem for relations is solvable in polynomial time. 
    more » « less
  5. We propose a means of augmenting FrameNet parsers with a formal logic parser to obtain rich semantic representations of events. These schematic representations of the frame events, which we call Episodic Logic (EL) schemas, abstract constants to variables, preserving their types and relationships to other individuals in the same text. Due to the temporal semantics of the chosen logical formalism, all identified schemas in a text are also assigned temporally bound "episodes" and related to one another in time. The semantic role information from the FrameNet frames is also incorporated into the schema's type constraints. We describe an implementation of this method using a neural FrameNet parser, and discuss the approach's possible applications to question answering and open-domain event schema learning. 
    more » « less