skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model Integration in Computational Biology: The Role of Reproducibility, Credibility and Utility
During the COVID-19 pandemic, mathematical modeling of disease transmission has become a cornerstone of key state decisions. To advance the state-of-the-art host viral modeling to handle future pandemics, many scientists working on related issues assembled to discuss the topics. These discussions exposed the reproducibility crisis that leads to inability to reuse and integrate models. This document summarizes these discussions, presents difficulties, and mentions existing efforts towards future solutions that will allow future model utility and integration. We argue that without addressing these challenges, scientists will have diminished ability to build, disseminate, and implement high-impact multi-scale modeling that is needed to understand the health crises we face.  more » « less
Award ID(s):
1720625
PAR ID:
10359459
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Systems Biology
Volume:
2
ISSN:
2674-0702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ocean scientists studying diverse organisms and phenomena increasingly rely on imaging devices for their research. These scientists have many tools to collect their data, but few resources for automated analysis. In this paper, we report on discussions with diverse stakeholders to identify community needs and develop a set of functional requirements for the ongoing development of ocean science-specific analysis tools. We conducted 36 in-depth interviews with individuals working in the Blue Economy space, revealing four central issues inhibiting the development of effective imaging analysis monitoring tools for marine science. We also identified twelve user archetypes that will engage with these services. Additionally, we held a workshop with 246 participants from 35 countries centered around FathomNet, a web-based open-source annotated image database for marine research. Findings from these discussions are being used to define the feature set and interface design of Ocean Vision AI, a suite of tools and services to advance observational capabilities of life in the ocean. 
    more » « less
  2. A central problem in modern condensed matter physics is the understanding of materials with strong electron correlations. Despite extensive work, the essential physics of many of these systems is not understood and there is very little ability to make predictions in this class of materials. In this manuscript we share our personal views on the major open problems in the field of correlated electron systems. We discuss some possible routes to make progress in this rich and fascinating field. This manuscript is the result of the vigorous discussions and deliberations that took place at Johns Hopkins University during a three-day workshop January 27, 28, and 29, 2020 that brought together six senior scientists and 46 more junior scientists. Our hope, is that the topics we have presented will provide inspiration for others working in this field and motivation for the idea that significant progress can be made on very hard problems if we focus our collective energies. 
    more » « less
  3. Over the academic year 2022–23, we discussed the teaching of software performance engineering with more than a dozen faculty across North America and beyond. Our outreach was centered on research-focused faculty with an existing interest in this course material. These discussions revealed an enthusiasm for making software performance engineering a more prominent part of a curriculum for computer scientists and engineers. Here, we discuss how MIT’s longstanding efforts in this area may serve as a launching point for community development of a software performance engineering curriculum, challenges in and solutions for providing the necessary infrastructure to universities, and future directions. 
    more » « less
  4. The design of structural and functional materials for specialized applications is experiencing significant growth fueled by rapid advancements in materials synthesis, characterization, and manufacturing, as well as by sophisticated computational materials modeling frameworks that span a wide spectrum of length and time scales in the mesoscale between atomistic and homogenized continuum approaches. This is leading towards a systems-based design methodology that will replace traditional empirical approaches, embracing the principles of the Materials Genome Initiative. However, there are several gaps in this framework as it relates to advanced structural materials development: (1) limited availability and access to high-fidelity experimental and computational datasets, (2) lack of co-design of experiments and simulation aimed at computational model validation, (3) lack of on-demand access to verified and validated codes for simulation and for experimental analyses, and (4) limited opportunities for workforce training and educational outreach. These shortcomings stifle major innovations in structural materials design. This paper describes plans for a community-driven research initiative that addresses current gaps based on best-practice recommendations of leaders in mesoscale modeling, experimentation, and cyberinfrastructure obtained at an NSF-sponsored workshop dedicated to this topic and subsequent discussions. The proposal is to create a hub for "Mesoscale Experimentation and Simulation co-Operation (h-MESO)---that will (I) provide curation and sharing of models, data, and codes, (II) foster co-design of experiments for model validation with systematic uncertainty quantification, and (III) provide a platform for education and workforce development. h-MESO will engage experimental and computational experts in mesoscale mechanics and plasticity, along with mathematicians and computer scientists with expertise in algorithms, data science, machine learning, and large-scale cyberinfrastructure initiatives. 
    more » « less
  5. Abstract There is no consensus on how quickly the earth's ice sheets are melting due to global warming, nor on the ramifications to sea level rise. Due to its potential effects on coastal populations and global economies, sea level rise is a grave concern, making ice melt rates an important area of study. The ice‐sheet science community consists of two groups that perform related but distinct kinds of research: a data community, and a model building community. The data community characterizes past and current states of the ice sheets by assembling data from field and satellite observations. The modeling community forecasts the rate of ice‐sheet decline with computational models validated against observations. Although observational data and models depend on one another, these two groups are not well integrated. Better coordination between data collection efforts and modeling efforts is imperative if we are to improve our understanding of ice sheet loss rates. We present a new science gateway,GHub, a collaboration space for ice sheet scientists. This web‐accessible gateway will host datasets and modeling workflows, and provide access to codes that enable tool building by the ice sheet science community. Using GHub, we will collect and centralize existing datasets, creating data products that more completely catalog the ice sheets of Greenland and Antarctica. We will build workflows for model validation and uncertainty quantification, extending existing ice sheet models. Finally, we will host existing community codes, enabling scientists to build new tools utilizing them. With this new cyberinfrastructure, ice sheet scientists will gain integrated tools to quantify the rate and extent of sea level rise, benefitting human societies around the globe. 
    more » « less