skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 25, 2026

Title: The future of the correlated electron problem
A central problem in modern condensed matter physics is the understanding of materials with strong electron correlations. Despite extensive work, the essential physics of many of these systems is not understood and there is very little ability to make predictions in this class of materials. In this manuscript we share our personal views on the major open problems in the field of correlated electron systems. We discuss some possible routes to make progress in this rich and fascinating field. This manuscript is the result of the vigorous discussions and deliberations that took place at Johns Hopkins University during a three-day workshop January 27, 28, and 29, 2020 that brought together six senior scientists and 46 more junior scientists. Our hope, is that the topics we have presented will provide inspiration for others working in this field and motivation for the idea that significant progress can be made on very hard problems if we focus our collective energies.  more » « less
Award ID(s):
2046570
PAR ID:
10611187
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
SciPost Foundation
Date Published:
Journal Name:
SciPost Physics Community Reports
ISSN:
0000-0000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field. 
    more » « less
  2. Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field. 
    more » « less
  3. Abstract Women have made significant contributions to applied physics research and development, and their participation is vital to continued progress. Recognizing these contributions is important for encouraging increased involvement and creating an equitable environment in which women can thrive. This Roadmap on Women in Applied Physics, written by women scientists and engineers, is intended to celebrate women’s accomplishments, highlight established and early career researchers enlarging the boundaries in their respective fields, and promote increased visibility for the impact women have on applied physics research. Perspectives cover the topics of plasma materials processing and propulsion, super-resolution microscopy, bioelectronics, spintronics, superconducting quantum interference device technology, quantum materials, 2D materials, catalysis and surface science, fuel cells, batteries, photovoltaics, neuromorphic computing and devices, nanophotonics and nanophononics, and nanomagnetism. Our intent is to inspire more women to enter these fields and encourage an atmosphere of inclusion within the scientific community. 
    more » « less
  4. Modeling unsteady, fast transient, and advection-dominated physics problems is a pressing challenge for physics-aware deep learning (PADL). The physics of complex systems is governed by large systems of partial differential equations (PDEs) and ancillary constitutive models with nonlinear structures, as well as evolving state fields exhibiting sharp gradients and rapidly deforming material interfaces. Here, we investigate an inductive bias approach that is versatile and generalizable to model generic nonlinear field evolution problems. Our study focuses on the recent physics-aware recurrent convolutions (PARC), which incorporates a differentiator-integrator architecture that inductively models the spatiotemporal dynamics of generic physical systems. We extend the capabilities of PARC to simulate unsteady, transient, and advection-dominant systems. The extended model, referred to as PARCv2, is equipped with differential operators to model advection-reaction-diffusion equations, as well as a hybrid integral solver for stable, long-time predictions. PARCv2 is tested on both standard benchmark problems in fluid dynamics, namely Burgers and Navier-Stokes equations, and then applied to more complex shock-induced reaction problems in energetic materials. We evaluate the behavior of PARCv2 in comparison to other physics-informed and learning bias models and demonstrate its potential to model unsteady and advection-dominant dynamics regimes. 
    more » « less
  5. Flat-band materials such as the kagome metals or moiré superlattices are of intense current interest. Flat bands can result from the electron motion on numerous (special) lattices and usually exhibit topological properties. Their reduced bandwidth proportionally enhances the effect of Coulomb interaction, even when the absolute magnitude of the latter is relatively small. Seemingly unrelated to these materials is the large family of strongly correlated electron systems, which include the heavy-fermion compounds, and cuprate and pnictide superconductors. In addition to itinerant electrons from large, strongly overlapping orbitals, they frequently contain electrons from more localized orbitals, which are subject to a large Coulomb interaction. The question then arises as to what commonality in the physical properties and microscopic physics, if any, exists between these two broad categories of materials. A rapidly increasing body of strikingly similar phenomena across the different platforms — from electronic localization–delocalization transitions to strange-metal behaviour and unconventional superconductivity — suggests that similar underlying principles could be at play. Indeed, it has recently been suggested that flat-band physics can be understood in terms of Kondo physics. Inversely, the concept of electronic topology from lattice symmetry, which is fundamental in flat-band systems, is enriching the field of strongly correlated electron systems, in which correlation-driven topological phases are increasingly being investigated. In this Perspective article, we elucidate this connection, survey the new opportunities for cross-fertilization across platforms and assess the prospect for new insights that may be gained into correlation physics and its intersection with electronic topology. 
    more » « less