skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rigid tumours contain soft cancer cells
Palpation utilizes the fact that solid breast tumours are stiffer than the surrounding tissue. However, cancer cells tend to soften, which may enhance their ability to squeeze through dense tissue. This apparent paradox proposes two contradicting hypotheses: either softness emerges from adaptation to the tumour’s microenvironment or soft cancer cells are already present inside a rigid primary tumour mass giving rise to cancer cell motility. We investigate primary tumour explants from patients with breast and cervix carcinomas on multiple length scales. We find that primary tumours are highly heterogeneous in their mechanical properties on all scales from the tissue level down to individual cells. This results in a broad rigidity distribution—from very stiff cells to cells softer than those found in healthy tissue—that is shifted towards a higher fraction of softer cells. Atomic-force-microscopy-based tissue rheology reveals that islands of rigid cells are surrounded by soft cells. The tracking of vital cells confirms the coexistence of jammed and unjammed areas in tumour explants. Despite the absence of a percolated backbone of stiff cells and a large fraction of unjammed, motile cells, cancer cell clusters show a heterogeneous solid behaviour with a finite elastic modulus providing mechanical stability.  more » « less
Award ID(s):
2046683
PAR ID:
10359533
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Physics
ISSN:
1745-2473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. Methods We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout ( CD8 and CD4 ) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. Results We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8 + T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8 + T-cell function. TCGA pan-cancer data confirmed that CD8 low Platelet high patients have a significantly lower survival probability compared to CD8 high Platelet low . Conclusions CD8 + T cells inhibit metastasis. When the balance between CD8 + T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8 + T-cell function. 
    more » « less
  2. In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth. In mice with poorly immunogenic tumours, the systemic delivery of macrophages with signal-regulatory protein alpha (SIRPα) genetically knocked out or else with blockade of the CD47–SIRPα macrophage checkpoint was combined with the monoclonal antibody and subsequently triggered the production of endogenous tumour-opsonizing immunoglobulin G, substantially increased the survival of the animals and helped confer durable protection from tumour re-challenge and metastasis. Maximizing phagocytic potency by increasing macrophage numbers, by tumour-cell opsonization and by disrupting the phagocytic checkpoint CD47– 
    more » « less
  3. Inevitably, almost all cancer patients develop resistance to targeted therapy. Intratumour heterogeneity is a major cause of drug resistance. Mathematical models that explain experiments quantitatively are useful in understanding the origin of intratumour heterogeneity, which then could be used to explore scenarios for efficacious therapy. Here, we develop a mathematical model to investigate intratumour heterogeneity in breast cancer by exploiting the observation that HER2+ and HER2− cells could divide symmetrically or asymmetrically. Our predictions for the evolution of cell fractions are in quantitative agreement with single-cell experiments. Remarkably, the colony size of HER2+ cells emerging from a single HER2− cell (or vice versa), which occurs in about four cell doublings, also agrees with experimental results, without tweaking any parameter in the model. The theory explains experimental data on the responses of breast tumours under different treatment protocols. We then used the model to predict that, not only the order of two drugs, but also the treatment period for each drug and the tumour cell plasticity could be manipulated to improve the treatment efficacy. Mathematical models, when integrated with data on patients, make possible exploration of a broad range of parameters readily, which might provide insights in devising effective therapies. 
    more » « less
  4. Abstract Mesenchymal–epithelial transition (MET) is essential for tissue and organ development and is thought to contribute to cancer by enabling the establishment of metastatic lesions. Despite its importance in both health and disease, there is a lack of in vitro platforms to study MET and little is known about the regulation of MET by mechanical cues. Here, hyaluronic acid‐based hydrogels with dynamic and tunable stiffnesses mimicking that of normal and tumorigenic mammary tissue are synthesized. The platform is then utilized to examine the response of mammary epithelial cells and breast cancer cells to dynamic modulation of matrix stiffness. Gradual softening of the hydrogels reduces proliferation and increases apoptosis of breast cancer cells. Moreover, breast cancer cells exhibit temporal changes in cell morphology, cytoskeletal organization, and gene expression that are consistent with mesenchymal–epithelial plasticity as the stiffness of the matrix is reduced. A reduction in matrix stiffness attenuates the expression of integrin‐linked kinase, and inhibition of integrin‐linked kinase impacts proliferation, apoptosis, and gene expression in cells cultured on stiff and dynamic hydrogels. Overall, these findings reveal intermediate epithelial/mesenchymal states as cells move along a matrix stiffness‐mediated MET trajectory and suggest an important role for matrix mechanics in regulating mesenchymal–epithelial plasticity. 
    more » « less
  5. Abstract Cancer nanomedicines predominately rely on transport processes controlled by tumor‐associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor‐associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified. Primary human breast cancer‐associated endothelial cells exhibit up to ≈2 times higher nanoparticle uptake than normal human mammary microvascular endothelial cells. Super‐resolution imaging studies reveal a significantly higher intracellular vesicle number for tumor‐associated endothelial cells, indicating a substantial increase in cellular transport activities. RNA sequencing and gene expression analysis indicate the upregulation of transport‐related genes, especially motor protein genes, in tumor‐associated endothelial cells. Collectively, the results demonstrate that primary human breast cancer‐associated endothelial cells exhibit enhanced interactions with nanomedicines, suggesting a potentially significant role for these cells in nanoparticle tumor delivery in human patients. Engineering nanoparticles that leverage the translational potential of tumor‐associated endothelial cell‐mediated transport into human solid tumors may lead to the development of safer and more effective clinical cancer nanomedicines. 
    more » « less