skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A mathematical model for phenotypic heterogeneity in breast cancer with implications for therapeutic strategies
Inevitably, almost all cancer patients develop resistance to targeted therapy. Intratumour heterogeneity is a major cause of drug resistance. Mathematical models that explain experiments quantitatively are useful in understanding the origin of intratumour heterogeneity, which then could be used to explore scenarios for efficacious therapy. Here, we develop a mathematical model to investigate intratumour heterogeneity in breast cancer by exploiting the observation that HER2+ and HER2− cells could divide symmetrically or asymmetrically. Our predictions for the evolution of cell fractions are in quantitative agreement with single-cell experiments. Remarkably, the colony size of HER2+ cells emerging from a single HER2− cell (or vice versa), which occurs in about four cell doublings, also agrees with experimental results, without tweaking any parameter in the model. The theory explains experimental data on the responses of breast tumours under different treatment protocols. We then used the model to predict that, not only the order of two drugs, but also the treatment period for each drug and the tumour cell plasticity could be manipulated to improve the treatment efficacy. Mathematical models, when integrated with data on patients, make possible exploration of a broad range of parameters readily, which might provide insights in devising effective therapies.  more » « less
Award ID(s):
1708128
PAR ID:
10382586
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
19
Issue:
186
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell profiling has been performed to interrogate drug resistance at cell level. Herein, we have built the DRMref database (https://ccsm.uth.edu/DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version of DRMref includes 42 single-cell datasets from 30 studies, covering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations provided. Meanwhile, DRMref includes analyses of cellular composition, intratumoral heterogeneity, epithelial–mesenchymal transition, cell–cell interaction and differentially expressed genes in resistant cells. Notably, DRMref investigates the drug resistance mechanisms (e.g. Aberration of Drug’s Therapeutic Target, Drug Inactivation by Structure Modification, etc.) in resistant cells. Additional enrichment analysis of hallmark/KEGG (Kyoto Encyclopedia of Genes and Genomes)/GO (Gene Ontology) pathways, as well as the identification of microRNA, motif and transcription factors involved in resistant cells, is provided in DRMref for user’s exploration. Overall, DRMref serves as a unique single-cell-based resource for studying drug resistance, drug combination therapy and discovering novel drug targets. 
    more » « less
  2. The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor–positive, human epidermal growth factor 2 receptor–negative (ER+/HER2−) breast tumor cells. Despite the drug’s success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib—a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle “paths” that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes. 
    more » « less
  3. null (Ed.)
    Heterogeneity is a hallmark of all cancers. Tumor heterogeneity is found at different levels — interpatient, intrapatient, and intratumor heterogeneity. All of them pose challenges for clinical treatments. The latter two scenarios can also increase the risk of developing drug resistance. Although the existence of tumor heterogeneity has been known for two centuries, a clear understanding of its origin is still elusive, especially at the level of intratumor heterogeneity (ITH). The coexistence of different subpopulations within a single tumor has been shown to play crucial roles during all stages of carcinogenesis. Here, using concepts from evolutionary game theory and public goods game, often invoked in the context of the tragedy of commons, we explore how the interactions among subclone populations influence the establishment of ITH. By using an evolutionary model, which unifies several experimental results in distinct cancer types, we develop quantitative theoretical models for explaining data from in vitro experiments involving pancreatic cancer as well as in vivo data in glioblastoma multiforme. Such physical and mathematical models complement experimental studies, and could optimistically provide new ideas for the design of efficacious therapies for cancer patients. 
    more » « less
  4. Abstract Resistance to treatment, which comes from the heterogeneity of cell types within tumors, is a leading cause of poor treatment outcomes in cancer patients. Previous mathematical work modeling cancer over time has neither emphasized the relationship between cell heterogeneity and treatment resistance nor depicted heterogeneity with sufficient nuance. To respond to the need to depict a wide range of resistance levels, we develop a random differential equation model of tumor growth. Random differential equations are differential equations in which the parameters are random variables. In the inverse problem, we aim to recover the sensitivity to treatment as a probability mass function. This allows us to observe what proportions of cells exist at different sensitivity levels. After validating the method with synthetic data, we apply it to monoclonal and mixture cell population data of isogenic Ba/F3 murine cell lines to uncover each tumor’s levels of sensitivity to treatment as a probability mass function. 
    more » « less
  5. Abstract Colorectal cancer, a significant cause of cancer-related mortality, often exhibits drug resistance, highlighting the need for improved tumor models to advance personalized drug testing and precision therapy. We generated organoids from primary colorectal cancer cells cultured through the conditional reprogramming technique, establishing a framework to perform short-term drug testing studies on patient-derived cells. To model interactions with stromal cells in the tumor microenvironment, we combined cancer cell organoids with carcinoma-associated fibroblasts, a cell type implicated in disease progression and drug resistance. Our organotypic models revealed that carcinoma-associated fibroblasts promote cancer cell proliferation and stemness primarily through hepatocyte growth factor–MET paracrine signaling and activation of cyclin-dependent kinases. Disrupting these tumor–stromal interactions reduced organoid size while limiting oncogenic signals and cancer stemness. Leveraging this tumor model, we identified effective drug combinations targeting colorectal cancer cells and their tumorigenic activities. Our study highlights a path to incorporate patient-derived cells and tumor–stromal interactions into a drug testing workflow that could identify effective therapies for individual patients. 
    more » « less