Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spontaneous flows and complex, out-of-equilibrium dynamics. We propose and demonstrate a convenient, highly tunable method for controlling flow, topology, and composition within active films. Our approach establishes rheological coupling via the indirect presence of fully submersed micropatterned structures within a thin, underlying oil layer. Simulations reveal that micropatterned structures produce effective virtual boundaries within the superjacent active nematic film due to differences in viscous dissipation as a function of depth. This accessible method of applying position-dependent, effective dissipation to the active films presents a nonintrusive pathway for engineering active microfluidic systems.
more »
« less
Mechanical stress affects dynamics and rheology of the human genome
Material properties of the genome are critical for proper cellular function – they directly affect timescales and length scales of DNA transactions such as transcription, replication and DNA repair, which in turn impact all cellular processes via the central dogma of molecular biology. Hence, elucidating the genome's rheology in vivo may help reveal physical principles underlying the genome's organization and function. Here, we present a novel noninvasive approach to study the genome's rheology and its response to mechanical stress in form of nuclear injection in live human cells. Specifically, we use Displacement Correlation Spectroscopy to map nucleus-wide genomic motions pre/post injection, during which we deposit rheological probes inside the cell nucleus. While the genomic motions inform on the bulk rheology of the genome pre/post injection, the probe's motion informs on the local rheology of its surroundings. Our results reveal that mechanical stress of injection leads to local as well as nucleus-wide changes in the genome's compaction, dynamics and rheology. We find that the genome pre-injection exhibits subdiffusive motions, which are coherent over several micrometers. In contrast, genomic motions post-injection become faster and uncorrelated, moreover, the genome becomes less compact and more viscous across the entire nucleus. In addition, we use the injected particles as rheological probes and find the genome to condense locally around them, mounting a local elastic response. Taken together, our results show that mechanical stress alters both dynamics and material properties of the genome. These changes are consistent with those observed upon DNA damage, suggesting that the genome experiences similar effects during the injection process.
more »
« less
- PAR ID:
- 10359548
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 107 to 116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Motivation Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural networks have been used to learn predictive cis-regulatory DNA sequence models of context-specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models cannot generalize predictions across cell types. Results We introduce multi-modal, residual neural network architectures that integrate cis-regulatory sequence and context-specific expression of trans-regulators to predict genome-wide chromatin accessibility profiles across cellular contexts. We show that the average accessibility of a genomic region across training contexts can be a surprisingly powerful predictor. We leverage this feature and employ novel strategies for training models to enhance genome-wide prediction of shared and context-specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular contexts. Availability and implementation The code is available at https://github.com/kundajelab/ChromDragoNN. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
The 3D spatiotemporal organization of the human genome inside the cell nucleus remains a major open question in cellular biology. In the time between two cell divisions, chromatin—the functional form of DNA in cells—fills the nucleus in its uncondensed polymeric form. Recent in vivo imaging experiments reveal that the chromatin moves coherently, having displacements with long-ranged correlations on the scale of micrometers and lasting for seconds. To elucidate the mechanism(s) behind these motions, we develop a coarse-grained active polymer model where chromatin is represented as a confined flexible chain acted upon by molecular motors that drive fluid flows by exerting dipolar forces on the system. Numerical simulations of this model account for steric and hydrodynamic interactions as well as internal chain mechanics. These demonstrate that coherent motions emerge in systems involving extensile dipoles and are accompanied by large-scale chain reconfigurations and nematic ordering. Comparisons with experiments show good qualitative agreement and support the hypothesis that self-organizing long-ranged hydrodynamic couplings between chromatin-associated active motor proteins are responsible for the observed coherent dynamics.more » « less
-
null (Ed.)Abstract The cell nucleus stores the genetic material essential for life, and provides the environment for transcription, maintenance, and replication of the genome. Moreover, the nucleoplasm is filled with subnuclear bodies such as nucleoli that are responsible for other vital functions. Overall, the nucleus presents a highly heterogeneous and dynamic environment with diverse functionality. Here, we propose that its biophysical complexity can be organized around three inter-related and interactive facets: heterogeneity, activity, and rheology. Most nuclear constituents are sites of active, ATP-dependent processes and are thus inherently dynamic: The genome undergoes constant rearrangement, the nuclear envelope flickers and fluctuates, nucleoli migrate and coalesce, and many of these events are mediated by nucleoplasmic flows and interactions. And yet there is spatiotemporal organization in terms of hierarchical structure of the genome, its coherently moving regions and membrane-less compartmentalization via phase-separated nucleoplasmic constituents. Moreover, the non-equilibrium or activity-driven nature of the nucleus gives rise to emergent rheology and material properties that impact all cellular processes via the central dogma of molecular biology. New biophysical insights into the cell nucleus can come from appreciating this rich inner life.more » « less
-
Abstract Eukaryotic genome and methylome encode DNA fragments’ propensity to form nucleosome particles. Although the mechanical properties of DNA possibly orchestrate such encoding, the definite link between ‘omics’ and DNA energetics has remained elusive. Here, we bridge the divide by examining the sequence-dependent energetics of highly bent DNA. Molecular dynamics simulations of 42 intact DNA minicircles reveal that each DNA minicircle undergoes inside-out conformational transitions with the most likely configuration uniquely prescribed by the nucleotide sequence and methylation of DNA. The minicircles’ local geometry consists of straight segments connected by sharp bends compressing the DNA’s inward-facing major groove. Such an uneven distribution of the bending stress favors minimum free energy configurations that avoid stiff base pair sequences at inward-facing major grooves. Analysis of the minicircles’ inside-out free energy landscapes yields a discrete worm-like chain model of bent DNA energetics that accurately account for its nucleotide sequence and methylation. Experimentally measuring the dependence of the DNA looping time on the DNA sequence validates the model. When applied to a nucleosome-like DNA configuration, the model quantitatively reproduces yeast and human genomes’ nucleosome occupancy. Further analyses of the genome-wide chromatin structure data suggest that DNA bending energetics is a fundamental determinant of genome architecture.more » « less
An official website of the United States government

