skip to main content


Title: The rich inner life of the cell nucleus: dynamic organization, active flows, and emergent rheology
Abstract The cell nucleus stores the genetic material essential for life, and provides the environment for transcription, maintenance, and replication of the genome. Moreover, the nucleoplasm is filled with subnuclear bodies such as nucleoli that are responsible for other vital functions. Overall, the nucleus presents a highly heterogeneous and dynamic environment with diverse functionality. Here, we propose that its biophysical complexity can be organized around three inter-related and interactive facets: heterogeneity, activity, and rheology. Most nuclear constituents are sites of active, ATP-dependent processes and are thus inherently dynamic: The genome undergoes constant rearrangement, the nuclear envelope flickers and fluctuates, nucleoli migrate and coalesce, and many of these events are mediated by nucleoplasmic flows and interactions. And yet there is spatiotemporal organization in terms of hierarchical structure of the genome, its coherently moving regions and membrane-less compartmentalization via phase-separated nucleoplasmic constituents. Moreover, the non-equilibrium or activity-driven nature of the nucleus gives rise to emergent rheology and material properties that impact all cellular processes via the central dogma of molecular biology. New biophysical insights into the cell nucleus can come from appreciating this rich inner life.  more » « less
Award ID(s):
1762506 1554880
NSF-PAR ID:
10233244
Author(s) / Creator(s):
Date Published:
Journal Name:
Biophysical Reviews
Volume:
12
Issue:
5
ISSN:
1867-2450
Page Range / eLocation ID:
1093 to 1106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Material properties of the genome are critical for proper cellular function – they directly affect timescales and length scales of DNA transactions such as transcription, replication and DNA repair, which in turn impact all cellular processes via the central dogma of molecular biology. Hence, elucidating the genome's rheology in vivo may help reveal physical principles underlying the genome's organization and function. Here, we present a novel noninvasive approach to study the genome's rheology and its response to mechanical stress in form of nuclear injection in live human cells. Specifically, we use Displacement Correlation Spectroscopy to map nucleus-wide genomic motions pre/post injection, during which we deposit rheological probes inside the cell nucleus. While the genomic motions inform on the bulk rheology of the genome pre/post injection, the probe's motion informs on the local rheology of its surroundings. Our results reveal that mechanical stress of injection leads to local as well as nucleus-wide changes in the genome's compaction, dynamics and rheology. We find that the genome pre-injection exhibits subdiffusive motions, which are coherent over several micrometers. In contrast, genomic motions post-injection become faster and uncorrelated, moreover, the genome becomes less compact and more viscous across the entire nucleus. In addition, we use the injected particles as rheological probes and find the genome to condense locally around them, mounting a local elastic response. Taken together, our results show that mechanical stress alters both dynamics and material properties of the genome. These changes are consistent with those observed upon DNA damage, suggesting that the genome experiences similar effects during the injection process. 
    more » « less
  2. The cell nucleus can be thought of as a complex, dynamic, living material, which functions to organize and protect the genome and coordinate gene expression. These functions are achieved via intricate mechanical and biochemical interactions among its myriad components, including the nuclear lamina, nuclear bodies, and the chromatin itself. While the biophysical organization of the nuclear lamina and chromatin have been thoroughly studied, the concept that liquid–liquid phase separation and related phase transitions play a role in establishing nuclear structure has emerged only recently. Phase transitions are likely to be intimately coupled to the mechanobiology of structural elements in the nucleus, but their interplay with one another is still not understood. Here, we review recent developments on the role of phase separation and mechanics in nuclear organization and discuss the functional implications in cell physiology and disease states. 
    more » « less
  3. The inside of a cell is very organized. Just as bodies contain internal organs, cells contain many different compartments, called ‘organelles’, each with its own specific role. Most organelles are surrounded by a membrane that keeps their contents separate from the cytoplasm, the water-based liquid inside the rest of the cell. Some organelles, however, are not bounded by a membrane. Instead, they act like tiny drops of oil in water, retaining their structure because they have different physical properties from the fluid around them, a phenomenon called liquid-liquid phase separation. One such organelle is the nucleolus, which sits inside the cell’s nucleus (a membrane-bound organelle containing all the genetic material of the cell in the form of DNA). The nucleolus’s job is to produce ribosomes, the cellular machines that, once transported out of the nucleus, will make proteins. Human cells start with 10 small nucleoli in the nucleus, which fuse together until only one or two larger ones remain. Previous research showed that nucleoli form and persist thanks to liquid-liquid phase separation, and they behave like liquid droplets. Despite this, exactly how nucleoli interact with each other and with the fluid environment in the rest of the nucleus remained unknown. Caragine et al. set out to measure the behavior and interactions of nucleoli in living human cells. Microscopy experiments using human cells grown in the laboratory allowed the positions, size and shape of nucleoli to be tracked over time. This also yielded detailed information about the smoothness of their surface. Mathematical analysis revealed that pairs of nucleoli normally moved independently of each other, unless they were about to fuse, when they invariably slowed down and coordinated their movements. In addition, altering the state of DNA in the surrounding nucleus also affected the nucleoli. For example, when DNA was less densely packed, nucleoli shrank and their surfaces became smoother. These results build on our knowledge of how cells are organized by showing, for the first time, that the environment within the nucleus directly shapes the behavior of nucleoli. In the future, a better understanding of how cells maintain healthy nucleoli may help develop new treatments for human diseases such as cancer, which are characterized by problems with this organelle. 
    more » « less
  4. YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.

     
    more » « less
  5. Summary

    A dynamic assembly of nuclear and cytoplasmic processes regulate gene activity. Hypoxic stress and the associated energy crisis activate a plurality of regulatory mechanisms including modulation of chromatin structure, transcriptional activation and post‐transcriptional processes. Temporal control of genes is associated with specific chromatin modifications and transcription factors. Genome‐scale technologies that resolve transcript subpopulations in the nucleus and cytoplasm indicate post‐transcriptional processes enable cells to conserve energy, prepare for prolonged stress and accelerate recovery. Moreover, the harboring of gene transcripts associated with growth in the nucleus and macromolecular RNA–protein complexes contributes to the preferential translation of stress‐responsive gene transcripts during hypoxia. We discuss evidence of evolutionary variation in integration of nuclear and cytoplasmic processes that may contribute to variations in flooding resilience.

     
    more » « less