Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm−1for 2.5–3.9-μm-long NWs reveal a series of resonances due to the Fabry–Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to them= 3 andm= 4 Fabry–Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry–Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.
more »
« less
Quantitative infrared photothermal microscopy
Infrared photothermal heterodyne imaging (IR-PHI) represents a convenient table top approach for conducting superresolution imaging and spectroscopy throughout the all-important mid infrared (MIR) spectral region. Although IR-PHI provides label-free, superresolution MIR absorption information, it is not quantitative. In this study, we establish quantitative relationships between observed IR-PHI signals and relevant photothermal parameters of investigated specimens. Specifically, we conduct a size series analysis of different radii polystyrene (PS) beads so as to quantitatively link IR-PHI signal contrast to specimen heat capacity, MIR peak absorption cross-section, and scattering cross-section at IR-PHI’s probe wavelength.
more »
« less
- Award ID(s):
- 1902403
- PAR ID:
- 10359584
- Editor(s):
- Gregor, Ingo; Erdmann, Rainer; Koberling, Felix
- Date Published:
- Journal Name:
- Proc. SPIE 11246, Single Molecule Spectroscopy and Super-resolution Imaging XIII
- Volume:
- SPIE 11246
- Issue:
- 1124613
- Page Range / eLocation ID:
- 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This perspective highlights recent advances in super-resolution, mid-infrared imaging and spectroscopy. It provides an overview of the different near field microscopy techniques developed to address the problem of chemically imaging specimens in the mid-infrared “fingerprint” region of the spectrum with high spatial resolution. We focus on a recently developed far-field optical technique, called infrared photothermal heterodyne imaging (IR-PHI), and discusses the technique in detail. Its practical implementation in terms of equipment used, optical geometries employed, and underlying contrast mechanism are described. Milestones where IR-PHI has led to notable advances in bioscience and materials science are summarized. The perspective concludes with a future outlook for robust and readily accessible high spatial resolution, mid-infrared imaging and spectroscopy techniques.more » « less
-
The emerging technique of mid-infrared optical coherence tomography (MIR-OCT) takes advantage of the reduced scattering of MIR light in various materials and devices, enabling tomographic imaging at deeper penetration depths. Because of challenges in MIR detection technology, the image acquisition time is, however, significantly longer than for tomographic imaging methods in the visible/near-infrared. Here we demonstrate an alternative approach to MIR tomography with high-speed imaging capabilities. Through femtosecond nondegenerate two-photon absorption of MIR light in a conventional Si-based CCD camera, we achieve wide-field, high-definition tomographic imaging with chemical selectivity of structured materials and biological samples in mere seconds.more » « less
-
An approach is described for spectrally parallel hyperspectral mid-infrared imaging with spatial resolution dictated by fluorescence imaging. Quantum cascade laser (QCL)-based dual-comb mid-infrared spectroscopy enables the acquisition of infrared spectra at high speed (<1 millisecond) through the generation of optical beat patterns and radio-frequency detection. The high-speed nature of the spectral acquisition is shown to support spectral mapping in microscopy measurements. Direct detection of the transmitted infrared beam yields high signal-to-noise spectral information, but long infrared wavelengths impose low diffraction-limited spatial resolution. The use of fluorescence detected photothermal infrared (F-PTIR) imaging provides high spatial resolution tied directly to the integrated IR absorption. Computational imaging using a multi-agent consensus equilibrium (MACE) approach combines the high spatial resolution of F-PTIR and the high spectral information of dual-comb infrared transmission in a single optimized equilibrium hyperspectral data cube.more » « less
-
The transient dynamics of photothermal signals provide interesting insights into material properties and heat diffusion. In a mid-infrared (mid-IR) photothermal microscope, the imaging contrast in a standard amplitude imaging can decrease due to thermal diffusion effects. It is shown that contrast varies for poly-methyl 2-methylpropenoate (PMMA) particles of different sizes when embedded in an absorbing medium of water (H2O) based on levels of heat exchange under the water absorption resonance. Using time-resolved boxcar (BC) detection, analysis of the transient thermal dynamics at the bead–water interface is presented, and the time decay parameters for 500 nm and 100 nm beads are determined. Enhanced (negative) imaging contrast is observed for less heat exchange between the water and bead, as in the case for the 100 nm bead. For the 500 nm bead, boxcar imaging before heat exchange starts occurring, leads to an increase of the imaging contrast up to a factor of 1.6.more » « less
An official website of the United States government

