skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus, and an endemic state
It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, that is, constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models, we demonstrate the emergence of a new long timescale governing the epidemic, in broad agreement with empirical data. Our stochastic social activity model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of a long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to an endemic state.  more » « less
Award ID(s):
2107344
PAR ID:
10359662
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Epidemic models study the spread of undesired agents through populations, be it infectious diseases through a country, misinformation in social media or pests infesting a region. In combating these epidemics, we rely neither on global top-down interventions, nor solely on individual adaptations. Instead, interventions commonly come from local institutions such as public health departments, moderation teams on social media platforms or other forms of group governance. Classic models, which are often individual or agent-based, are ill-suited to capture local adaptations. We leverage developments of institutional dynamics based on cultural group selection to study how groups attempt local control of an epidemic by taking inspiration from the successes and failures of other groups. Incorporating institutional changes into epidemic dynamics reveals paradoxes: a higher transmission rate can result in smaller outbreaks as does decreasing the speed of institutional adaptation. When groups perceive a contagion as more worrisome, they can invest in improved policies and, if they maintain these policies long enough to have impact, lead to a reduction in endemicity. By looking at the interplay between the speed of institutions and the transmission rate of the contagions, we find rich coevolutionary dynamics that reflect the complexity of known biological and social contagions. 
    more » « less
  2. Lau, Eric HY (Ed.)
    The presence of heterogeneity in susceptibility, differences between hosts in their likelihood of becoming infected, can fundamentally alter disease dynamics and public health responses, for example, by changing the final epidemic size, the duration of an epidemic, and even the vaccination threshold required to achieve herd immunity. Yet, heterogeneity in susceptibility is notoriously difficult to detect and measure, especially early in an epidemic. Here we develop a method that can be used to detect and estimate heterogeneity in susceptibility given contact by using contact tracing data, which are typically collected early in the course of an outbreak. This approach provides the capability, given sufficient data, to estimate and account for the effects of this heterogeneity before they become apparent during an epidemic. It additionally provides the capability to analyze the wealth of contact tracing data available for previous epidemics and estimate heterogeneity in susceptibility for disease systems in which it has never been estimated previously. The premise of our approach is that highly susceptible individuals become infected more often than less susceptible individuals, and so individuals not infected after appearing in contact networks should be less susceptible than average. This change in susceptibility can be detected and quantified when individuals show up in a second contact network after not being infected in the first. To develop our method, we simulated contact tracing data from artificial populations with known levels of heterogeneity in susceptibility according to underlying discrete or continuous distributions of susceptibilities. We analyzed these data to determine the parameter space under which we are able to detect heterogeneity and the accuracy with which we are able to estimate it. We found that our power to detect heterogeneity increases with larger sample sizes, greater heterogeneity, and intermediate fractions of contacts becoming infected in the discrete case or greater fractions of contacts becoming infected in the continuous case. We also found that we are able to reliably estimate heterogeneity and disease dynamics. Ultimately, this means that contact tracing data alone are sufficient to detect and quantify heterogeneity in susceptibility. 
    more » « less
  3. Abstract Stochastic epidemic models (SEMs) fit to incidence data are critical to elucidating outbreak dynamics, shaping response strategies, and preparing for future epidemics. SEMs typically represent counts of individuals in discrete infection states using Markov jump processes (MJPs), but are computationally challenging as imperfect surveillance, lack of subject‐level information, and temporal coarseness of the data obscure the true epidemic. Analytic integration over the latent epidemic process is impossible, and integration via Markov chain Monte Carlo (MCMC) is cumbersome due to the dimensionality and discreteness of the latent state space. Simulation‐based computational approaches can address the intractability of the MJP likelihood, but are numerically fragile and prohibitively expensive for complex models. A linear noise approximation (LNA) that approximates the MJP transition density with a Gaussian density has been explored for analyzing prevalence data in large‐population settings, but requires modification for analyzing incidence counts without assuming that the data are normally distributed. We demonstrate how to reparameterize SEMs to appropriately analyze incidence data, and fold the LNA into a data augmentation MCMC framework that outperforms deterministic methods, statistically, and simulation‐based methods, computationally. Our framework is computationally robust when the model dynamics are complex and applies to a broad class of SEMs. We evaluate our method in simulations that reflect Ebola, influenza, and SARS‐CoV‐2 dynamics, and apply our method to national surveillance counts from the 2013–2015 West Africa Ebola outbreak. 
    more » « less
  4. Abstract The emergency generated by the current COVID-19 pandemic has claimed millions of lives worldwide. There have been multiple waves across the globe that emerged as a result of new variants, due to arising from unavoidable mutations. The existing network toolbox to study epidemic spreading cannot be readily adapted to the study of multiple, coexisting strains. In this context, particularly lacking are models that could elucidate re-infection with the same strain or a different strain—phenomena that we are seeing experiencing more and more with COVID-19. Here, we establish a novel mathematical model to study the simultaneous spreading of two strains over a class of temporal networks. We build on the classical susceptible–exposed–infectious–removed model, by incorporating additional states that account for infections and re-infections with multiple strains. The temporal network is based on the activity-driven network paradigm, which has emerged as a model of choice to study dynamic processes that unfold at a time scale comparable to the network evolution. We draw analytical insight from the dynamics of the stochastic network systems through a mean-field approach, which allows for characterizing the onset of different behavioral phenotypes (non-epidemic, epidemic, and endemic). To demonstrate the practical use of the model, we examine an intermittent stay-at-home containment strategy, in which a fraction of the population is randomly required to isolate for a fixed period of time. 
    more » « less
  5. Risk-driven behaviour provides a feedback mechanism through which individuals both shape and are collectively affected by an epidemic. We introduce a general and flexible compartmental model to study the effect of heterogeneity in the population with regard to risk tolerance. The interplay between behaviour and epidemiology leads to a rich set of possible epidemic dynamics. Depending on the behavioural composition of the population, we find that increasing heterogeneity in risk tolerance can either increase or decrease the epidemic size. We find that multiple waves of infection can arise due to the interplay between transmission and behaviour, even without the replenishment of susceptibles. We find that increasing protective mechanisms such as the effectiveness of interventions, the fraction of risk-averse people in the population and the duration of intervention usage reduce the epidemic overshoot. When the protection is pushed past a critical threshold, the epidemic dynamics enter an underdamped regime where the epidemic size exactly equals the herd immunity threshold and overshoot is eliminated. Finally, we can find regimes where epidemic size does not monotonically decrease with a population that becomes increasingly risk-averse. 
    more » « less